|Table of Contents|

CTB-50 vertical vibration compaction method for cement stabilized macadam(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2024年3期
Page:
34-42
Research Field:
道路工程
Publishing date:

Info

Title:
CTB-50 vertical vibration compaction method for cement stabilized macadam
Author(s):
JIANG Ying-jun1 LI Sheng1 LI Ming-jie2 YANG Ming2 CHEN Zhe-jiang3 HE Yan4 YI Yong1
(1. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University,Xi'an 710064, Shaanxi, China; 2. Henan Province Traffic Infrastructure Quality Inspection Station, Zhengzhou 450016,Henan, China; 3. Jinhua Communications Investment Group Co. LTD, Jinhua 321015, Zhejiang, China; 4. Xuchang Highway Development Center, Xuchang 461099, Henan, China)
Keywords:
road engineering road base ultra-large particle size cement stabilized macadam vertical vibration compaction method mechanical strength
PACS:
U416.21
DOI:
10.19721/j.cnki.1671-8879.2024.03.003
Abstract:
In order to evaluate the physical and mechanical properties of ultra-large particle size cement stabilized macadam with a maximum particle size of 53 mm accurately(CTB-50), the influence of specimen size on the mechanical strength test values of CTB-50 was investigated using theoretical analysis and laboratory tests. Then the effect of vibration parameters of the vertical vibration compaction testing equipment(VVTE)on the dry density and gradation of CTB-50 was investigated, and the vertical vibration compression testing method(VVTM)of CTB-50 was developed. The reliability of VVTM was verified by comparing the mechanical properties with the field core samples. The results show that with the increase of specimen size, the interfacial effect of the loose area of the specimen becomes weakened and the effective compression area increases, which shows that the test value of CTB-50's strength increase, and increasing the specimen size has no significant effect on the strength when the specimen size reaches Φ200 mm(diameter)×h200 mm(tall). With the increase of working frequency, the dry density of CTB-50 increases significantly, while the dry density does not change significantly when the working frequency exceeds 32 Hz. With the increase of loading weight of working system, the dry density of CTB-50 varies as parabolic approximately, and the dry density reaches the maximum when the working mass is 302 kg. Then the vibration is less destructive to the gradation when the loading weight of upper-system and lower-system is 122 and 180 kg, respectively. With the extension of vibration time, the dry density of CTB-50 increases significantly, while the dry density does not change significantly when the vibration time exceeds 165 s. Therefore, it is recommended that the size of CTB-50 cylindrical specimen is Φ200 mm×h200 mm, the working frequency of VVTE is 32 Hz, while the working mass is302 kg(loading weight of upper-system of 122 kg, loading weight of lower-system of 180 kg), and the nominal amplitude is 1.2 mm. To determine the maximum dry density and optimum moisture content, the vibration time is 165 s, and the vibration time for preparing the cylindrical specimen is 120 s. The correlation between the mechanical strength of VVTM specimens and field core samples of CTB-50 is 91%. It is reasonable and feasible to form CTB-50 specimens by VVTM.8 tabs, 6 figs, 30 refs.

References:

[1] DENG C Q,JIANG Y J,TIAN T,et al.Resilient modulus and influencing factors of vertical vibration compacted cement-stabilized macadam[J].International Journal of Pavement Engineering,2021,22(11):1435-1445.
[2]张 阳,王傲鹏,张靖霖,等.水泥稳定碎石材料干燥收缩研究综述[J].吉林大学学报(工学版),2023,53(2):297-311.
ZHANG Yang,WANG Ao-peng,ZHANG Jing-lin,et al.Dry shrinkage in cement-stabilized macadam:A review [J].Journal of Jilin University(Engineering and Technology Edition),2023,53(2):297-311.
[3]曾梦澜,罗 迪,吴超凡,等.不同级配类型水泥稳定碎石路面基层材料的抗裂性能 [J].湖南大学学报(自然科学版),2013,40(10):1-7.
ZENG Meng-lan,LUO Di,WU Chao-fan,et al.Anti-cracking properties of cement stabilized crushed stone pavement base materials of different aggregate structures [J].Journal of Hunan University(Natural Sciences),2013,40(10):1-7.
[4]毕玉峰,聂晨亮,蒋应军,等.超大粒径CTB-50劈裂强度增长规律与影响因素[J].公路,2022,67(9):38-43.
BI Yu-feng,NIE Chen-liang,JIANG Ying-jun,et al.Growth law of splitting strength and influencing factors of super-large particle size CTB-50[J].Highway,2022,67(9):38-43.
[5]谭 波,杨 涛.基于振动旋转压实制样方式骨架密实型大粒径级配碎石性能研究[J].中外公路,2022,42(5):161-166.
[DW]TAN Bo,YANG Tao.Research properties of skeleton-density large graded macadam based on gyratory and vibration compaction[J].Journal of China & Foreign Highway,2022,42(5):161-166.
[6]杨 明,蒋应军,李明杰,等.CTB-50水泥稳定碎石抗冻性能研究[J].公路,2023,68(1):46-51.
YANG Ming,JIANG Ying-jun,LI Ming-jie,et al.Research on frost resistance of CTB-50 cement stabilized macadam[J].Highway,2023,68(1):46-51.
[7]YI Y,JIANG Y J,TIAN T,et al.Mechanical-strength-growth law and predictive model for ultra-large size cement-stabilized macadam based on the vertical vibration compaction method [J].Construction and Building Materials,2022,324:126691.
[8]国计凯.超大粒径嵌挤结构水稳破口砾石路面基层试验研究 [D].邯郸:河北工程大学,2018.
GUO Ji-kai.Experimental study on water-stable broken gravel pavement base with ultra-large particle size embedded structure [D].Handan:Hebei University of Engineering,2018.
[9]关笑楠.大粒径水泥稳定碎石抗裂性能试验研究 [D].杭州:浙江大学,2006.
GUAN Xiao-nan.Experimental study on crack resistance of large-size cement stabilized macadam [D].Hangzhou:Zhejiang University,2006.
[10]上官宇浩.超大粒径CTB-50水泥稳定碎石路用性能及设计方法研究[D].西安:长安大学,2021.
SHANGGUAN Yu-hao.Research on road performance and design method of super large size CTB-50 cement stabilized macadam[D].Xi'an:Chang'an University,2021.
[11]李立寒,黄 璞,刘 栋.旋转与静压成型对水泥稳定碎石性能的影响 [J].长安大学学报(自然科学版),2016,36(6):17-25.
LI Li-han,HUANG Pu,LIU Dong.Impact on performance of cement stabilized macadam mixtures between gyratory compaction and static compaction methods [J].Journal of Chang'an University(Natural Science Edition),2016,36(6):17-25.
[12]刘 栋,李立寒.旋转压实成型水泥稳定类基层材料试验 [J].中国公路学报,2019,32(11):118-128.
LIU Dong,LI Li-han.Experiment on gyratory compaction of cement stabilized base course materials [J].China Journal of Highway and Transport,2019,32(11):118-128.
[13]王 龙,解晓光.水泥稳定碎石振动与静压成型物理力学指标关系 [J].哈尔滨工业大学学报,2012,44(10):70-74.
WANG Long,XIE Xiao-guang.Relationship on index of physics and mechanics cement-stabilized aggregates between vibrating and static compacting methods [J].Journal of Harbin Institute of Technology,2012,44(10):70-74.
[14]田耀刚,石帅锋,肖 燕,等.成型方式对厚层水泥稳定碎石基层路用性能影响 [J].太原理工大学学报,2015,46(3):278-282.
TIAN Yao-gang,SHI Shuai-feng,XIAO Yan,et al.Effect of molding methods on pavement performance of thick cement stabilized macadam base [J].Journal of Taiyuan University of Technology,2015,46(3):278-282.
[15]薛万安.大厚度水泥稳定碎石基层施工质量控制关键技术研究 [D].西安:长安大学,2017.
XUE Wan-an.Research on key technologies of construction quality control of thick cement stabilized macadam base [D].Xi'an:Chang'an University,2017.
[16]纪小平,王 涛,周泽洪,等.振动法水泥稳定砾石的力学疲劳特性与强度标准[J].建筑材料学报,2018,21(5):761-767,774.
JI Xiao-ping,WANG Tao,ZHOU Ze-hong,et al.Mechanical and fatigue properties as well as strength criteria of cement stabilized gravel produced by vibration compaction method[J].Journal of Building Materials,2018,21(5):761-767,774.
[17]曾梦澜,薛子龙,谷世君,等.开级配水泥稳定碎石基层路用性能的试验研究 [J].北京工业大学学报,2015,41(4):579-583.
ZENG Meng-lan,XUE Zi-long,GU Shi-jun,et al.Trial study on the pavement performance of open graded cement stabilized aggregate base [J].Journal of Beijing University of Technology,2015,41(4):579-583.
[18]袁可佳,蒋应军,邓长清,等.水泥稳定破碎砾石垂直振动成型试验方法评价[J].大连理工大学学报,2021,61(3):288-296.
YUAN Ke-jia,JIANG Ying-jun,DENG Chang-qing,et al.Evaluation of cement-stabilized crushed gravel compacted using vertical vibration testing method[J].Journal of Dalian University of Technology,2021,61(3):288-296.
[19]刘树堂,夏建平,高雪池,等.压实土体试件动力学参数室内测试[J].长安大学学报(自然科学版),2022,42(4):1-9.
[DW]LIU Shu-tang,XIA Jian-ping,GAO Xue-chi,et al.Laboratory test of kinetic parameters of compacted soil specimen[J].Journal of Chang'an University(Natural Science Edition),2022,42(4):1-9.
[20]JIANG Y J,FAN L F.An investigation of mechanical behavior of cement-stabilized crushed rock material using different compaction methods [J].Construction and Building Materials,2013,48:508-515.
[21]聂桂海,李伟聪,李 浩.水泥稳定碎石力学特性研究 [J].公路,2021,66(1):44-50.
NIE Gui-hai,LI Wei-cong,LI Hao.Research on mechanical properties of cement-stabilized aggregate [J].Highway,2021,66(1):44-50.
[22]马士宾,杨鑫玮,徐文斌,等.水泥稳定碎石基层材料微裂力学特性研究 [J].公路工程,2017,42(4):159-163,190.
MA Shi-bin,YANG Xin-wei,XU Wen-bin,et al.Study on mechanical properties of microcracking of cement stabilized crushed stone base materials [J].Highway Engineering,2017,42(4):159-163,190.
[23]蒋应军,李湾湾,方 剑,等.振动压实二灰碎石力学特性及影响因素 [J].长安大学学报(自然科学版),2017,37(1):1-9.
JIANG Ying-jun,LI Wan-wan,FANG Jian,et al.Mechanical properties and influencing factors of lime-fly-ash crushed rock base on vertical vibration test method [J].Journal of Chang'an University(Natural Science Edition),2017,37(1):1-9.
[24]赵 伟,蒋应军,陈浙江,等.水基聚合物SRX稳定碎石路用性能 [J].建筑材料学报,2017,20(4):598-603.
ZHAO Wei,JIANG Ying-jun,CHEN Zhe-jiang,et al.Road performance of water-based polymer SRX stabilized crushed stone [J].Journal of Building Materials,2017,20(4):598-603.
[25]蒋应军,沈 彬,陈冠希.垂直振动压实水泥冷再生混合料劈裂强度特性 [J].长安大学学报(自然科学版),2016,36(2):9-16,58.
JIANG Ying-jun,SHEN Bin,CHEN Guan-xi.Splitting strength properties of cement cold recycling mixtures based on vertical vibration compaction [J].Journal of Chang'an University(Natural Science Edition),2016,36(2):9-16,58.
[26]蒋应军,富志鹏,李宁方.基于胶浆原理的二灰碎石设计方法 [J].交通运输工程学报,2015,15(5):8-14,33.
JIANG Ying-jun,FU Zhi-peng,LI Ning-fang.Design method of LSCR based on mortar theory [J].Journal of Traffic and Transportation Engineering,2015,15(5):8-14,33.
[27]DENG C Q,JIANG Y J,LIN H W,et al.Mechanical-strength-growth law and predictive model for cement-stabilized macadam [J].Construction and Building Materials,2019,215:582-594.
[28]JIANG Y J,TIAN T,DENG C Q,et al.Effects of cement content,curing period,gradation,and compaction degree on mechanical behavior of cement-stabilized crushed gravel produced via vertical vibration test method [J].Advances in Civil Engineering,2020,2020:1-13.
[29]邹桂莲,吴 欣,刘新海.尺寸效应与成型工艺对无机结合料稳定材料无侧限抗压强度的影响 [J].中外公路,2019,39(6):254-258.
ZOU Gui-lian,WU Xin,LIU Xin-hai.Influence of size effect and molding process on unconfined compressive strength of inorganic binder stabilized materials[J].Journal of China & Foreign Highway,2019,39(6):254-258.
[30]JTG E51—2009,公路工程无机结合料稳定材料试验规程[S].
JTG E51—2009,Test methods of materials stabilized with inorganic binders for highway engineering[S].

Memo

Memo:
-
Last Update: 2024-05-01