|Table of Contents|

Structural design and electrical properties of cantilever beam piezoelectric energy harvester by finite element analysis(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年6期
Page:
25-36
Research Field:
道路工程
Publishing date:

Info

Title:
Structural design and electrical properties of cantilever beam piezoelectric energy harvester by finite element analysis
Author(s):
LI Hui XU Long-zhou MAO Peng XIE Zheng-yang ZHAO Xin-bo WANG Zhen-jun
(School of Materials Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China)
Keywords:
road engineering piezoelectric energy harvester finite element method cantilever beam energy harvesting road
PACS:
U416.22
DOI:
10.19721/j.cnki.1671-8879.2023.06.003
Abstract:
To explore the effects of structural parameters and piezoelectric materials on the electrical output performances of the piezoelectric energy harvester, the piezoelectric effect and the finite element simulation analysis method were employed. The initial structural model of the cantilever beam piezoelectric energy harvester was established, and the electrical output performance of different piezoelectric materials were analyzed, using the structural mechanics and AC/DC modules in COMSOL Multiphysics software. The results show that, according to the speed of the car on the road, it is concluded that the vibration frequency of the road is 6.67 to 13.33 Hz and will not reach20 Hz. The electrical output performance of the energy harvester using PZT-5H energy is the best in the road vibration frequency of 0 to 18 Hz, and the performance of PZT-5A is better in the range of 19 to 20 Hz. According to the actual vibration frequency range of the road surface, the piezoelectric material of PZT-5H is recommended. According to the output effect of electrical performance, the structure of the initial energy harvester is optimized, and the optimized structural parameters are obtained [the support structure size(length×width×height)is(1×20×1)mm3, the piezoelectric material size is(30×20×0.06)mm3, the metal substrate size is(30×20×0.1)mm3 and the mass block size is(4×20×1)mm3]. When the vibration frequency is 10 Hz and the vibration acceleration is 1g, the optimal external load of the cantilever piezoelectric energy harvester is 35 kΩ, and the corresponding output voltage and output power is 0.30 V and 1.24×10-6 W respectively, which is increased by 58% and 463% comparing to the output voltage(0.19 V)and output power(0.22×10-6 W)the initial structural. The characteristic frequency of the cantilever piezoelectric energy harvester was analyzed, and the calculated first-order characteristic frequency is 76.9 Hz. When the cantilever piezoelectric energy harvester works in the range of 0 to 20 Hz, the output voltage and output power increase with the increase of vibration frequency. At this time the working frequency is far away from the first order characteristic frequency, proving that the designed energy harvester model is reasonable in the range of road vibration frequency.4 tabs, 12 figs, 33 refs.

References:

[1] WANG H,JASIM A,CHEN X D.Energy harvesting technologies in roadway and bridge for different applications-A comprehensive review[J].Applied Energy,2018,212:1083-1094.
[2]GHOLIKHANI M,ROSHANI H,DESSOUKY S,et al.A critical review of roadway energy harvesting technologies[J].Applied Energy,2020,261:114388.
[3]WEI H G,WANG H,XIA Y J,et al.An overview of lead-free piezoelectric materials and devices[J].Journal of Materials Chemistry C,2018,6(46):12446-12467.
[4]COVACI C,GONTEAN A.Piezoelectric energy harvesting solutions:A review[J].Sensors,2020,20(12):3512.
[5]王朝辉,王海梁,李彦伟,等.压电材料与路面材料一体化发电路面技术研究[J].公路交通科技,2016,33(11):14-19,25.
WANG Chao-hui,WANG Hai-liang,LI Yan-wei,et al.Study on technology of power pavement based on integration of piezoelectric material and pavement material[J].Journal of Highway and Transportation Research and Development,2016,33(11):14-19,25.
[6]蔡树生,杨京鸿.压电技术探析及其在道路能量收集中的应用[J].工业技术创新,2016,3(5):945-948.
CAI Shu-sheng,YANG Jing-hong.Analysis of piezoelectric technology and its applications on road energy collection[J].Industrial Technology Innovation,2016,3(5):945-948.
[7]ROSHANI H,DESSOUKY S,PAPAGIANNAKIS A T,et al.Experimental and finite element assessment of three energy harvesting prototypes for roadways[J].Innovative Infrastructure Solutions,2017,2(1):1-12.
[8]赵鸿铎,梁颖慧,凌建明.基于压电效应的路面能量收集技术[J].上海交通大学学报,2011,45(增1):62-66.
ZHAO Hong-duo,LIANG Ying-hui,LING Jian-ming.Study on harvesting energy from pavement based on piezoelectric effects[J].Journal of Shanghai Jiao Tong University,2011,45(S1):62-66.
[9]黄如宝,牛衍亮,赵鸿铎,等.道路压电能量收集技术途径与研究展望[J].中国公路学报,2012,25(6):1-8.
HUANG Ru-bao,NIU Yan-liang,ZHAO Hong-duo,et al.Technical approach and research prospect of piezoelectric energy harvest from highway[J].China Journal of Highway and Transport,2012,25(6):1-8.
[10]谭忆秋,钟 勇,吕建福,等.路面用PZT/沥青压电复合材料的制备及性能[J].建筑材料学报,2013,16(6):975-980.
TAN Yi-qiu,ZHONG Yong,LU Jian-fu,et al.Preparation and properties of PZT/asphalt-based piezoelectric composites used on pavement[J].Journal of Building Materials,2013,16(6):975-980.
[11]曹阳森,沙爱民,蔡若楠,等.夹层式压电换能器开路电压影响因素[J].长安大学学报(自然科学版),2019,39(1):53-60,80.
CAO Yang-sen,SHA Ai-min,CAI Ruo-nan,et al.Influence factors of open-circuit voltage on sandwich piezoelectric transducer[J].Journal of Chang'an University(Natural Science Edition),2019,39(1):53-60,80.
[12]REZAEI M,KHADEM S E,FIROOZY P.Broadband and tunable PZT energy harvesting utilizing local nonlinearity and tip mass effects[J].International Journal of Engineering Science,2017,118:1-15.
[13]POIKSELKA K,LEINONEN M,PALOSAARI J,et al.Novel genetically optimised high-displacement piezoelectric actuator with efficient use of active material[J].Smart Materials and Structures,2017,26(9):095022.
[14]PEDDIGARI M,LIM K W,KIM M,et al.Effect of elastic modulus of cantilever beam on the performance of unimorph type piezoelectric energy harvester[J].APL Materials,2018,6(12):121107.
[15]AVVARI P V,YANG Y W,SOH C K.Long-term fatigue behavior of a cantilever piezoelectric energy harvester[J].Journal of Intelligent Material Systems and Structures,2017,28(9):1188-1210.
[16]RAJU S S,UMAPATHY M,UMA G.Cantilever piezoelectric energy harvester with multiple cavities[J].Smart Materials and Structures,2015,24(11):115023.
[17]PRIYA S.Advances in energy harvesting using low profile piezoelectric transducers[J].Journal of Electroceramics,2007,19(1):167-184.
[18]BABU I,HENDRIX M M,DE WITH G.PZT-5A4/PA and PZT-5A4/PDMS piezoelectric composite bimorphs[J].Smart Materials and Structures,2014,23(2):025029.
[19]BEEBY S P,TUDOR M J,WHITE N M.Energy harvesting vibration sources for microsystems applications[J].Measurement Science and Technology,2006,17(12):175-195.
[20]ZHOU N N,GAO S,LI R Q,et al.Transient output performance of symmetrical V-shaped micro-piezoelectric energy harvester by using PZT-5H[J].Microsystem Technologies,2021,27(3):779-787.
[21]LI X Y,UPADRASHTA D,YU K P,et al.Sandwich piezoelectric energy harvester:Analytical modeling and experimental validation[J].Energy Conversion and Management,2018,176:69-85.
[22]BISWAL P,KAR S K,MUKHERJEE B.Design and optimization of high-performance through hole based MEMS energy harvester using Piezo MUMPs[J].Journal of Electronic Materials,2021,50(1):375-388.
[23]XIONG Y,SONG F,LENG X.A piezoelectric cantilever-beam energy harvester(PCEH)with a rectangular hole in the metal substrate[J].Microsystem Technologies,2020,26(3):801-810.
[24]KIM T,KO Y,YOO C,et al.Design optimisation of wide-band piezoelectric energy harvesters for self-powered devices[J].Energy Conversion and Management,2020,225:113443.
[25]TAN Z,PENG Y T,AN J A,et al.Intrinsic origin of enhanced piezoelectricity in alkali niobate-based lead-free ceramics[J].Journal of the American Ceramic Society,2019,102(9):5262-5270.
[26]RATHOD A P S,KUKRETI K,MISHRA A,et al.Performance analysis of bimorph cantilever beam using piezoelectric materials and MEMS technology[J].Materials Today,2021,46:10865-10869.
[27]LIU W,HAN M D,MENG B,et al.Low frequency wide bandwidth MEMS energy harvester based on spiral-shaped PVDF cantilever[J].Science China Technological Sciences,2014,57(6):1068-1072.
[28]BAE J H,CHANG S H.PVDF-based ferroelectric polymers and dielectric elastomers for sensor and actuator applications:A review[J].Functional Composites and Structures,2019,1(1):012003.
[29]SUNITHAMANI S,LAKSHMI P.Simulation study on performance of MEMS piezoelectric energy harvester with optimized substrate to piezoelectric thickness ratio[J].Microsystem Technologies,2015,21(4):733-738.
[30]LEFEUVRE E,AUDIGIER D,RICHARD C,et al.Buck-boost converter for sensorless power optimization of piezoelectric energy harvester[J].IEEE Transactions on Power Electronics,2007,22(5):2018-2025.
[31]WANG S,WANG C H,YU G X,et al.Development and performance of a piezoelectric energy conversion structure applied in pavement[J].Energy Conversion and Management,2020,207:112571.
[32]IBRAHIM D S,SUN B B,FATAI S,et al.Numerical and experimental study of a gauge-shaped beam for improved performance of piezoelectric energy harvester[J].Microsystem Technologies,2021,27(12):4253-4268.
[33]KIM J H,CHO J Y,JHUN J P,et al.Development of a hybrid type smart pen piezoelectric energy harvester for an IoT platform[J].Energy,2021,222:119845.

Memo

Memo:
-
Last Update: 2023-10-30