|Table of Contents|

Overview of identification methods of highway accident-prone sections(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年5期
Page:
72-87
Research Field:
交通工程
Publishing date:

Info

Title:
Overview of identification methods of highway accident-prone sections
Author(s):
ZHANG Chi1 ZHOU Yu-ming1 ZHAI Yi-yang1 ZHANG Min2 WANG Bo1
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. School of Transportation Engineering, Chang'an University, Xi'an 710064, Shaanxi, China)
Keywords:
traffic engineering identification method review accident-prone section neural network algorithm Bayesian method GIS
PACS:
U491.1
DOI:
10.19721/j.cnki.1671-8879.2023.05.008
Abstract:
To explore the research status and development trend of highway accident-prone section identification methods, the China knowledge network(CNKI)and Web of ScienceTM were used to examine the topic-related literature using bibliometric methodologies. From a macro viewpoint, a quick analysis of the number of publications, keywords, and research nations were given, along with an explanation of the strategy for identifying accident-prone highways basedon the mechanisms of accidents. The accident-prone road section identification method was divided into four sub-tasks based on this,road section unit division, data collection and processing, selection of identification indexes, and identification methods. The fourthsub-task was divided into three categories, statistically-driven methods, model-driven methods, and spatially-driven methods. Thecurrent status of research on the various types of methods was reviewed, as well as their advantages. The future path of theidentification methods for highway accident-prone sections was then suggested from the viewpoints of roadway unit division, trafficaccident data, and roadway identification methods. The results show that road units that satisfy the objective length ofaccident-prone road sections can be more accurately classified using the sliding window approach and clustering algorithm. Model-driven approaches can be seen as providing a solution to the issues with statistically driven methods, such as their lack of flexibilityin defining indicator levels that are more subjective and their failure to account for the randomness of accidents. The model-drivenmethod has the flaw of an unscientific selection of accident causative factors. A reasonable selection of accident causative factors,and rigorous relevance verification based on that selection, combined with grey theory can help to improve the accuracy of themodel. Spatially driven approaches are useful for visualizing data, and the spatiotemporal cube method based on geographicinformation systems(GIS)taking the time dimension into account has grown in popularity as a research area recently. The fusion ofmodel-driven and spatial-driven approaches helps to build models with strong visualization and accurate discrimination. Futureresearch may focus on expanding to two-dimensional geographical and temporal road segment units, multi-dimensional dynamic datafusion, quantitative modeling of accident causation, and accident indicators with a focus on human components.3 tabs, 14 figs, 62 refs.

References:

[1] 国家统计局.2020年交通事故数据[EB/OL].(2020-12-31)[2022-1-17].http://https-data-stats-gov-cn.proxy.www.stats.gov.cn.
National Bureau of Statistics of China.2020 traffic accident data[EB/OL].(2020-12-31)[2022-1-17].http://https-data-stats-gov-cn.proxy.www.stats.gov.cn.
[2]陈 荔,李聪颖,詹 立,等.城市道路交通事故形态影响因素分析与预测[J].长安大学学报(自然科学版),2022,42(4):98-107.
CHEN Li,LI Cong-ying,ZHAN Li,et al.Influencing factors analysis and prediction of urban road traffic accident patterns[J].Journal of Chang'an University(Natural Science Edition),2022,42(4):98-107.
[3]王 磊,余功新,王朝辉,等.面向降低路面湿滑事故率的交通量与抗滑阈值确定(英文)[J].长安大学学报(自然科学版),2019,39(5):106-114.
WANG Lei,YU Gong-xin,WANG Chao-hui,et al.Determining thresholds of traffic volume and skid resistance to reduce pavement's wet accident ratio[J].Journal of Chang'an University(Natural Science Edition),2019,39(5):106-114.
[4]KRAMMES R A.Interactive highway safety design model:Design consistency module[J].Public Roads,1997,61(2):47-51.
[5]SAWALHA Z A.Traffic accident modeling:Statistical issues and safety applications[D].Vancouver:The University ofBritish Columbia,2002.
[6]KONONOV J.Road accident prediction modeling and diagnostics of accident causality a comprehensive methodology[M].Denver:University of Colorado,2002.
[7]HIDAS P.Modelling vehicle interactions in microscopic simulation of merging and weaving[J].Transportation ResearchPart C,2005,13(1):37-62.
[8]CHANG I,KIM S W.Modelling for identifying accident-prone spots:Bayesian approach with a Poisson mixture model[J].KSCE Journal of Civil Engineering,2012,16(3):441-449.
[9]YANNIS G,GOLIAS J,KANELLAIDIS G.A comparative analysis of the potential of international road accident data piles[J].IATSS Research,2000,22:111-120.
[10]ALLEN B L,SHIN B T,COOPER P.Analysis of traffic conflicts and collisions[J].Transportation ResearchRecord,1978(667):67-74.
[11]李 娜.基于ArcGIS的城市道路交通事故多发点鉴别系统研究[D].成都:西南交通大学,2009.
LI Na.Identification system for urban traffic accident hazardous locations based on ArcGIS[D].Chengdu:Southwest JiaotongUniversity,2009.
[12]方守恩,郭忠印,杨 轸.公路交通事故多发位置鉴别新方法[J].交通运输工程学报,2001,1(1):90-94,98.
FANG Shou-en,GUO Zhong-yin,YANG Zhen.A new identification method for accident prone location on highway[J].Journal of Traffic and Transportation Engineering,2001,1(1):90-94,98.
[13]ZHANG C,MA X Y,YAN X M,et al.Identifying hazardous road sections using a fuzzy expert system[J].Proceedings of the Institution of Civil Engineers-Transport,2020,173(3):147-158.
[14]徐 敏,黄 星,张 驰,等.山区急弯路段行车安全性模糊综合评判分析方法[J].中国公路学报,2016,29(6):186-197.
XU Min,HUANG Xing,ZHANG Chi,et al.Application of fuzzy synthesis evaluation to driving safety analysis of sharp curves onmountain expressways[J].China Journal of Highway and Transport,2016,29(6):186-197.
[15]白浩晨,张 驰,孟 良,等.基于T-S模糊推理的山区高速公路危险路段识别方法[J].公路,2016,61(12):156-162.
BAI Hao-chen,ZHANG Chi,MENG Liang,et al.Identification method for mountainous highway hazardous segments based on T-Sfuzzy inference[J].Highway,2016,61(12):156-162.
[16]孟祥海,盛洪飞,陈天恩.事故多发点鉴别本质及基于BP神经网络的鉴别方法研究[J].公路交通科技,2008,4(3):124-129.
MENG Xiang-hai,SHENG Hong-fei,CHEN Tian-en.Essence and an approach to identify the hazardous locations of urban arterial link based on BPartificial neural network[J].Journal of Highway and Transportation Research and Development,2008,4(3):124-129.
[17]田 准,张生瑞.优化经验贝叶斯事故黑点识别与排序方法[J].长安大学学报(自然科学版),2019,39(5):115-126.
TIAN Zhun,ZHANG Sheng-rui.Identification and ranking of accident black spots using advanced empirical Bayes method[J].Journal of Chang'an University(Natural Science Edition),2019,39(5):115-126.
[18]NGUYEN H H,TANEERANANON P,LUATHEP P.Approach to identifying black spots based on potential saving inaccident costs[J].Engineering Journal,2016,20(2):109-122.
[19]NESIC M,LIPOVAC K,VUJANIC M,et al.Roadside public survey approach in black spot identification on rural roads:Case study[J].Transport,2016,31(2):271-281.
[20]MURAT Y S,CAKICI Z.An integration of different computing approaches in traffic safety analysis[J].Transportation Research Procedia,2017,22:265-274.
[21]ALI A,BANDARA N,HENSON S.Identification of accident black-spots in 18 Michigan freeways using GIS[D].Southfield:Lawrence Technological University,2015.
[22]刘晓辉.道路交通事故黑点鉴别方法研究概述[J].科学之友,2011(8):132-133.
LIU Xiao-hui.The research overview of identification methods for road traffic accident's black spots[J].Friend of Science Amateurs,2011(8):132-133.
[23]ZHANG C,ZHANG H,MA X Y,et al.Driving risk assessment in work zones using cloud model[J].Mathematical Problems in Engineering,2018(10):1-9.
[24]袁 浩,史桂芳,汤振农,等.交通事故多发路段研究[J].交通信息与安全,2009,27(2):100-103.
YUAN Hao,SHI Gui-fang,TANG Zhen-nong,et al.Traffic accident-prone locations[J].Journal of Transport Information andSafety,2009,27(2):100-103.
[25]孙元强.基于改进累计频率曲线法的交通事故黑点鉴别及智能识别平台构建[D].西安:长安大学,2021.
SUN Yuan-qiang.Identification of black spots in traffic accidents based on improved cumulative frequency curve method andintelligent recognition platform construction[D].Xi'an:Chang'an University,2021.
[26]王晓飞.基于固定步长道路分段的累计频率曲线事故鉴别方法在山区高速公路中的应用[J].交通标准化,2012,40(17):31-34.
WANG Xiao-fei.Application of cumulative frequency curve incident identification method in mountainous expressway based onroad section with fixed step[J].Transportation Standardization,2012,40(17):31-34.
[27]张铁军,唐琤琤,张巍汉.双变量区间过滤法进行事故多发段判别[J].公路交通科技,2006,23(3):139-142,150.
ZHANG Tie-jun,TANG Cheng-cheng,ZHANG Wei-han.Accident prone location identification on highway using double variables filtration method[J].Journal of Highway and Transportation Research and Development,2006,23(3):139-142,150.
[28]SZENASI S,CSIBA P.Planar sliding window technique for searching accident hot spots[C]//SGEM.Proceedings of International Multidisciplinary Scientific GeoConference-SGEM.Sofia:Stef92 Technology Ltd,2015:767-772.
[29]SZENASI S.GPU implementation of DBSCAN algorithm for searching multiple accident black spots[C]//SGEM.Proceedings of International Multidisciplinary Scientific GeoConference-SGEM.Sofia:Stef92 Technology Ltd,2015:647-652.
[30]符锌砂,何石坚,鲁 岳,等.公路线形评价方法的工程实用性探讨[J].中外公路,2018,38(1):5-10.
FU Xin-sha,HE Shi-jian,LU Yue,et al.Research on engineering practicability of highway alignment evaluation method[J].Journal ofChina & Foreign Highway,2018,38(1):5-10.
[31]孟祥海,张道玉,吴佩洁.滑动窗窗体长度及滑动步长对事故多发路段鉴别影响[J].交通运输系统工程与信息,2018,18(4):148-155.
MENG Xiang-hai,ZHANG Dao-yu,WU Pei-jie.The impact of window size and sliding length on the results of black spotsidentification[J].Journal of Transportation Systems Engineering and Information Technology,2018,18(4):148-155.
[32]IFTHIKAR A,HETTIARACHCHI S.Analysis of historical accident data to determine accident prone locations and causeof accidents[C]//IEEE.Proceedings of the 2018 8th International Conference on Intelligent Systems,Modelling and Simulation(ISMS).New York:IEEE,2019:11-15.
[33]冯少荣,肖文俊.基于密度的DBSCAN聚类算法的研究及应用[J].计算机工程与应用,2007,43(20):216-221.
FENG Shao-rong,XIAO Wen-jun.Research and application of DBSCAN clustering algorithm based on density[J].ComputerEngineering and Applications,2007,43(20):216-221.
[34]谢 练,吴超仲,吕能超,等.基于改进聚类算法的道路交通事故多发路段鉴别方法研究[J].武汉理工大学学报(交通科学与工程版),2014,38(4):904-908.
XIE Lian,WU Chao-zhong,LYU Neng-chao,et al.Accident-prone section identification approach based on improved clusteringalgorithm[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2014,38(4):904-908.
[35]耿 超,彭余华.基于动态分段和DBSCAN算法的交通事故黑点路段鉴别方法[J].长安大学学报(自然科学版),2018,38(5):131-138.
GENG Chao,PENG Yu-hua.Identification method of traffic accident black spots based on dynamic segmentation and DBSCANalgorithm[J].Journal of Chang'an University(Natural Science Edition),2018,38(5):131-138.
[36]AJAYKUMAR R,GUPTA A,MERCHANT P S N.Automated lane detection byk-means clustering:A machine learningapproach[J].Electronic Imaging,2016,28(14):1-6.
[37]ZHANG C,SHU Y,YAN L X.A novel identification model for road traffic accident black spots:A case study inNingbo,China[J].IEEE Access,2019,7:140197-140205.
[38]DEBRABANT B,HALEKOH U,BONAT W H,et al.Identifying traffic accident black spots with Poisson-Tweedie models[J].Accident Analysis & Prevention,2018,111:147-154.
[39]牛志鹏,祁首铭,吴东玲,等.考虑系统聚类的公路交通事故多发点鉴别研究[J].中国安全科学学报,2018,28(11):104-109.
NIU Zhi-peng,QI Shou-ming,WU Dong-ling,et al.Research on identification of black spots for highway based on system clusteringmethod[J].China Safety Science Journal,2018,28(11):104-109.
[40]王晓飞,姚江贝.基于公路三维空间线形连续性的安全性分析及应用[J].公路,2022,67(1):92-96.
WANG Xiao-fei,YAO Jiang-bei.Safety analysis and application based on highway three-dimensional linear continuity[J].Highway,2022,67(1):92-96.
[41]陈国华,程 文.美国道路交通事故黑点鉴别的历史发展及未来走向[C]//中国职业安全健康协会.中国职业安全健康协会首届年会暨职业安全健康论坛论文集.重庆:煤炭工业出版社,2004:70-74.
CHEN Guo-hua,CHENG Wen.Historical development and future directions for black spot identification in U.S. road traffic crashes[C]//China Occupational Safety and Health Association.Proceedings of China Occupational Safety and Health Association's First Annual Conference and Occupational Safety and Health Forum.Chongqing:China Coal Industry Publishing House,2004:70-74.
[42]ABBESS C,JARRETT D,WRIGHT C C.Accidents at blackspots:Estimating the effectiveness of remedial treatment,withspecial reference to the “regression-to-mean” effect[J].Traffic Engineering & Control,1981,22(10):532-542.
[43]CHENG W,WASHINGTON S P.Experimental evaluation of hotspot identification methods[J].Accident Analysis & Prevention,2005,37(5):870-881.
[44]叶 莹.水麻高速公路雨天事故多发路段交通事故特性与限速研究[D].西安:长安大学,2020.
YE Ying.Research on traffic accident characteristics and speed limitation of rainy accident-prone road sections in Shuima Expressway[D].Xi'an:Chang'an University,2020.
[45]IQBAL A,REHMAN Z U,ALI S,et al.Road traffic accident analysis and identification of black spot locations on highway[J].Civil Engineering Journal,2020,6(12):2448-2456.
[46]XING D W,LI X S.Identification of speedway accident black spots based on the quality control method[C]//IEEE.Proceedings of the 2015 SeventhInternational Conference on Measuring Technology and Mechatronics Automation.New York.IEEE,2015:541-544.
[47]卢 杨.基于经验贝叶斯法的高速公路事故黑点识别研究[D].西安:长安大学,2015.
LU Yang.The research of identifying highway accident black spots based on empirical Bayes method[D].Xi'an:Chang'an University,2015.
[48]张长生,马荣国.山区高速公路交通事故分析及多发路段鉴别[J].长安大学学报(自然科学版),2010,30(6):76-80.
ZHANG Chang-sheng,MA Rong-guo.Identifying method of traffic accident black spots on mountain freeway[J].Journal ofChang'an University(Natural Science Edition),2010,30(6):76-80.
[49]路 峰,姜文龙.道路交通事故多发点分析与预案管理系统[J].中国人民公安大学学报(自然科学版),2000,6(3):43-46.
LU Feng,JIANG Wen-long.Analysis of road traffic accident-prone points and plan management system[J].Journal of Chinese thePeople's Public Security University(Natural Science),2000,6(3):43-46.
[50]BONNESON J A,MCCOY P T.Effect of median treatment on urban arterial safety:An accident prediction model[J].Transportation Research Record,1997(1581):27-36.
[51]孟祥海,李 梅,麦 强,等.高速公路事故多发点鉴别及诱发因素识别[J].交通运输系统工程与信息,2011,11(1):114-120.
MENG Xiang-hai,LI Mei,MAI Qiang,et al.Research on identification of black spot and accident inducing factor for freeway[J].Journal of Transportation Systems Engineering and Information Technology,2011,11(1):114-120.
[52]YU B,CHEN Y R,BAO S,et al.Quantifying drivers' visual perception to analyze accident-prone locations on two-lanemountain highways[J].Accident Analysis & Prevention,2018,119:122-130.
[53]FAN Z Y,LIU C,CAI D J,et al.Research on black spot identification of safety in urban traffic accidents based on machinelearning method[J].Safety Science,2019,118:607-616.
[54]TANPRASERT T,SIRIPANPORNCHANA C,SURASVADI N,et al.Recognizing traffic black spots from street viewimages using environment-aware image processing and neural network[J].IEEE Access,2020,8:121469-121478.
[55]GOLDSTEIN M,WOOFF D.Bayes linear statistics:Theory and methods[M].London:John Wiley & Sons,2007.
[56]WAN Y,HE W Q,ZHOU J B.Urban road accident black spot identification and classification approach:A novel grey Verhuls-empirical Bayesian combination method[J].Sustainability,2021,13(20):11198.
[57]邵祖峰.交通事故黑点鉴别方法研究综述[J].道路交通与安全,2008,8(2):44-49.
SHAO Zu-feng.Reviews on identifying methods of traffic accident black-spot[J].Road Traffic & Safety,2008,8(2):44-49.
[58]MESTRI R A,RATHOD R R,GARG R D.Identification and removal of accident-prone locations using spatial data mining[C]//GHOSH J K,DASILVA I.Proceedings of Lecture Notes in Civil Engineering.Singapore:Springer-Verlag Singapore Pte Ltd,2020:383-394.
[59]王颖志,王立君.基于网络时空核密度的交通事故多发点鉴别方法[J].地理科学,2019,39(8):1238-1245.
WANG Ying-zhi,WANG Li-jun.An identification method of traffic accident black point based on street-network spatial-temporalkernel density estimation[J].Scientia Geographica Sinica,2019,39(8):1238-1245.
[60]朱新宇,丛浩哲,支 野,等.基于GIS空间聚类的事故多发路段鉴别分析系统[J].城市交通,2018,16(3):21-27,86.
ZHU Xin-yu,CONG Hao-zhe,ZHI Ye,et al.Accident-prone location analysis based on GIS spatial clustering[J].Urban Transport ofChina,2018,16(3):21-27,86.
[61]吴佩洁,孟祥海,曹梦迪.城市交通事故多发点鉴别与时空模式挖掘[J].中国安全科学学报,2020,30(11):127-133.
WU Pei-jie,MENG Xiang-hai,CAO Meng-di.Identification of black spots in urban roads and spatiotemporal patterns mining[J].China Safety Science Journal,2020,30(11):127-133.
[62]CUI H J,DONG J G,ZHU M Q,et al.Identifying accident black spots based on the accident spacing distribution[J].Journal of Traffic and Transportation Engineering(English Edition),2022:9(6):1017-1026.

Memo

Memo:
-
Last Update: 2023-10-10