|Table of Contents|

Analysis and optimization on crashworthiness of ECC plate-thin walled steel pipe composite protective facility(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年4期
Page:
40-49
Research Field:
桥梁与隧道工程
Publishing date:

Info

Title:
Analysis and optimization on crashworthiness of ECC plate-thin walled steel pipe composite protective facility
Author(s):
ZHANG Jing-feng1 JI Hao-hao1 FENG Liang1 KONG Ling-yun12 YANG Dong3
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Zhengzhou Municipal Engineering Survey Design & Research Institute, Zhengzhou 450018, Henan, China; 3. CCIC West Testing Co. Led., Xi'an 710032, Shaanxi, China)
Keywords:
bridge engineering over-height vehicle hollow slab bridge composite protective facility crashworthiness parametric analysis
PACS:
U447
DOI:
10.19721/j.cnki.1671-8879.2023.04.005
Abstract:
In order to reduce the damage of bridge superstructure under over-height vehicle collision, an ECC plate-thin walled steel pipe composite protective facility was proposed. The protective facility was comprised of threemodules, the diffusion module, energy absorption module, and fixing module. The diffusion module, consisting ofECC plate and reinforcement mesh, directly withstood impact from over-height vehicle. The energy absorptionmodule, made up of thin-walled steel pipe filled with polyurethane foam, stored the kinetic energy of the vehicleby deforming itself. The fixing module, constructed from steel plates, provided a reliable connection between theprotective facility and the main beam. The refined finite element model of the protective device was established,with a focus on the elastic-plastic damage of the concrete and ECC materials, as well as the nonlinear contactrelationship between the protective facility and the bridge. The explicit dynamic analysis software Ls-Dyna wasutilized to conduct an in-depth analysis of its crashworthiness performance. The parameters sensitivity of theprotective device was discussed. A standard two-axle truck impacting with the superstructure of prestressedconcrete hollow slab bridge was taken as research example. In a typical analysis case, the vehicle speed is 80 km/h,vehicle weight is 25 t and the over height of impact is 250 mm. The results show that the prestressedconcrete hollow slab bridge mainly presents localized damage that is concrete spalling and reinforcement fractureunder impact. The ECC plate in the composite protective facility can effectively disperse the impact load andprotect the bridge structure. The filled polyurethane foam in the steel pipe and thickening the ECC plate canreduce the deformation of composite protective facility. Increasing the pipe height will increase the energyabsorption effect of protective facility. From the perspective of engineering practical application, the designparameters should be determined comprehensively from the aspects of energy absorption and impact resistance ofthe composite protective facility to ensure its protective effect.3 tabs, 12 figs, 22 refs.

References:

[1] 陆新征,张炎圣,叶列平,等.超高车辆-桥梁上部结构碰撞的破坏模式与荷载计算[J].中国公路学报,2009,22(5):60-67.
LU Xin-zheng,ZHANG Yan-sheng,YE Lie-ping,et al.Failure modes and load calculation of collision between over-high truck and bridge superstructure[J].China Journal of Highway andTransport,2009,22(5):60-67.
[2]FUC C,BURHOUSE J R,CHANG G L.Overheight-vehicle collisions with highwaybridges[J].Trans-portation ResearchRecord,2004(1865):80-88.
[3]肖 波,王 爽,吴卫国,等.桥墩防撞装置碰撞动力学分析[J].武汉理工大学学报(交通科学与工程版),2005,29(1):49-51,67.
XIAO Bo,WANG Shuang,WU Wei-guo,et al.Analysis on collision dynamics aboutcollision-preventing device of pier[J].Journal ofWuhan University of Technology(TransportationScience & Engineering),2005,29(1):49-51,67.
[4]单成林,许薛军.夹层板整体曲面形桥墩防撞装置受力性能分析[J].中国公路学报,2014,27(10):53-59.
图12 不同ECC板厚度下防护装置塑性损伤云图
Fig.12 Damage contour of protective facility at different ECC plate thicknesses
SHAN Cheng-lin,XU Xue-jun.Analysis ofmechanical properties of pier anti-collision deviceby sandwich plate with overall curved surface[J].China Journal of Highway andTransport,2014,27(10):53-59.
[5]冯明扬,刘保东,张敏强,等.外包橡胶混凝土覆层对梁式桥墩防撞性能影响的试验研究[J].振动与冲击,2020,39(2):269-274.
FENG Ming-yang,LIU Bao-dong,ZHANGMin-qiang,et al.Experimental study on theanti-collision performance of beam bridge pierswith wrapped crumb rubber concrete layers[J].Journal of Vibration andShock,2020,39(2):269-274.
[6]孙胜江,朱长华,梅葵花.玄武岩纤维复合材料梁-柱式护栏防撞性能[J].振动与冲击,2019,38(21):265-270.
SUN Sheng-jiang,ZHU Chang-hua,MEIKui-hua.Anti-collision performance of basalt fibercomposite beam-column guardrails[J].Journal ofVibration and Shock,2019,38(21):265-270.
[7]陆新征,何水涛,黄盛楠.超高车辆撞击桥梁上部结构研究:破坏机理、设计方法和防护对策[M].北京:中国建筑工业出版社,2011.
LU Xin-zheng,HE Shui-tao,HUANGSheng-nan.Collision between over-height vehiclesand bridge superstructures[M].Beijing:ChinaArchitecture & Building Press,2011.
[8]陈炳聪,张力文,周 危,等.一种防止超高车辆撞击桥隧的拦截索式柔性防撞装置:中国,CN110374025A[P].2019-10-25.
CHEN Bing-cong,ZHANG Li-wen,ZHOU Wei,et al.Interception cable type flexible anti-collisiondevice for preventing ultrahigh vehicle fromcolliding with bridge and tunnel:China,CN110374025A[P].2019-10-25.
[9]FAN W,LIU B,CONSOLAZIO G R.Residualcapacity of axially loaded circular RC columns afterlateral low-velocity impact[J].Journal of StructuralEngineering,2019,145(6):04019039.
[10]FAN W,SHEN D J,ZHANG Z Y,et al.Anovel UHPFRC-based protective structure forbridge columns against vehiclecollisions:Experiment,simulation,and optimization[J].Engineering Structures,2020,207:110247.
[11]张于晔,潘睿阳,蒋冬启.车辆撞击作用下泡沫铝防撞桥墩的动态响应特性[J].振动工程学报,2021,34(1):89-98.
ZHANG Yu-ye,PAN Rui-yang,JIANGDong-qi.Dynamic response characteristics of thebridge piers with aluminum foam anti-collisiondevices under vehicle impact[J].Journal ofVibration Engineering,2021,34(1):89-98.
[12]郑 植,耿 波,杨 波,等.新型旋转式护栏防车撞能力与导向机理[J].振动与冲击,2022,41(12):202-214.
ZHENG Zhi,GENG Bo,YANG Bo,et al.Anti-collision ability and guiding mechanism of anew rotary guardrail[J].Journal of Vibration andShock,2022,41(12):202-214.
[13]方 涵,潘 晋,吴亚锋,等.桥梁复合材料防车撞结构的耐撞性影响因素分析[J].武汉理工大学学报(交通科学与工程版),2017,41(3):507-511,516.
FANG Han,PAN Jin,WU Ya-feng,et al.Crashworthiness parameters analysis of bridge composite protection structures[J].Journal ofWuhan University of Technology(TransportationScience & Engineering),2017,41(3):507-511,516.
[14]田 力,朱 聪.碰撞冲击荷载作用下钢筋混凝土柱的损伤评估及防护技术[J].工程力学,2013,30(9):144-150,157.
TIAN Li,ZHU Cong.Damage evaluation andprotection technique of RC columns under impulsiveload[J].EngineeringMechanics,2013,30(9):144-150,157.
[15]陈国虞,王礼立,杨黎明.桥梁防撞理论和防撞装置设计[M].北京:人民交通出版社,2013.
CHEN Guo-yu,WANG Li-li,YANG Li-ming.Theprotection theory for ship-bridge collisions and thedesign of crashworthy devices[M].Beijing:ChinaCommunications Press,2013.
[16]邱志雄.桥墩遭受船舶撞击下的动力响应及其防撞结构研究[D].天津:天津大学,2014.
QIU Zhi-xiong.Study on dynamic response of pierunder ship impact and its anti-collision structure[D].Tianjin:Tianjin University,2014.
[17]LI Q M,MENG H.About the dynamic strengthenhancement of concrete-like materials in a splitHopkinson pressure bar test[J].International Journalof Solids and Structures,2003,40(2):343-360.
[18]徐世烺,李贺东.超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报,2008,41(6):45-60.
XU Shi-lang,LI He-dong.A review on thedevelopment of research and application of ultrahigh toughness cementitious composites[J].ChinaCivil Engineering Journal,2008,41(6):45-60.
[19]NCAC.Finite element model archive[EB/OL].(2010-11-30)[2023-06-04].https://thyme.ornl.gov/FHWA/F800WebPage/description/description.html.
[20]张景峰,孔令云,韩万水,等.超高车辆撞击下预应力混凝土空心板桥损伤机理及撞后承载力研究[J].中国公路学报,2021,34(2):177-187.
ZHANG Jing-feng,KONG Ling-yun,HANWan-shui,et al.Damage mechanism andpostcollision bearing capacity of prestressedconcrete hollow slab bridge underoverheight-vehicle collision[J].China Journal ofHighway and Transport,2021,34(2):177-187.
[21]徐世烺,陈 超,李庆华,等.超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J].工程力学,2019,36(9):50-59.
XU Shi-lang,CHEN Chao,LI Qing-hua,et al.Numerical simulation on dynamic compressivebehavior of ultra-high toughnesscementitious-composites[J].EngineeringMechanics,2019,36(9):50-59.
[22]HASSANPOUR R F,LIAGHATG,SABOURI H,et al.High-velocity impact loadingin honeycomb sandwich panels reinforced withpolymer foam:A numerical approach study[J].Iranian Polymer Journal,2020,29(8):707-721.

Memo

Memo:
-
Last Update: 2023-08-20