|Table of Contents|

Digital information characteristics of asphalt pavement construction technology(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2023年1期
Page:
18-29
Research Field:
道路工程
Publishing date:

Info

Title:
Digital information characteristics of asphalt pavement construction technology
Author(s):
SI Wei12 WANG Rui1 ZHANG Bo-wen1 LI Ning3 CIDAN Duo-jie12 MA Biao1
(1. Key Laboratory of Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, Shaanxi, China; 2. Tibet Tianlu Co., Ltd, Lhasa 850000, Tibet, China; 3. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China)
Keywords:
road engineering asphalt pavement construction technology parameter characteristic dimensional reduction analysis correlation digital information
PACS:
U415.6
DOI:
10.19721/j.cnki.1671-8879.2023.01.003
Abstract:
The digitalization of asphalt pavement construction technology was the basis of intelligent construction of asphalt pavement. The digital information features played a decisive role in providing accurate and efficient construction plans and control decisions. Statistics method of big data was used to analyze the process parameters of asphalt mixture in four stages of mixing, transportation, paving and rolling. In addition, correlation and dimensional reduction analyses were carried out, to obtain the characteristics of process parameters in different construction stages and clarify the correlation. The results show that the variability of mixing parameters is low, while the amount of materials used is low. The distribution of paving value is low, while the re-rolling temperature and final-rolling temperature is high. The paving speed and rolling speed tend to be greater, and the abnormal value mainly appeares in the upper limit of the distribution. The best fitting distribution functions of different parameters are different. Lognorm function has a great goodness of fit for construction parameters, which can be used to build a construction temperature prediction model. The correlation between mixing parameters is great, but it is low with paving and rolling parameters. Moreover, the correlation between paving parameters and rolling parameters is also low. With the dimensional reduction analysis, the 10 dimensions of mixing parameters are reduced to 2 dimensions, which can effectively retain the characteristics of the original 10 dimensions parameters. After dimensional reduction, paving and rolling parameters highly independent, but these independent parameters still need to be carefully selected to establish the construction control model, so as to improve the accuracy and generalization of the model.2 tabs, 12 figs, 19 refs.

References:

[1] 郭大进,沙爱民,孙建华,等.沥青路面工程质量控制指标体系的研究[J].公路交通科技,2007,24(4):71-74.
GUO Da-jin,SHA Ai-min,SUN Jian-hua,et al.Research on asphalt pavement quality control parameter criteria system[J].Journal of Highway and Transportation Research and Development,2007,24(4):71-74.
[2]刘聂玚子,刘洪海,荣 鑫,等.确定改性沥青混合料拌和温度的功率法[J].华中科技大学学报(自然科学版),2021,49(7):44-48.
LIU Nie-yangzi,LIU Hong-hai,RONG Xin,et al.Stirring power method to determine mixing temperature of modified asphalt mixture[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2021,49(7):44-48.
[3]陈 艳,葛凌波,宋焕生.沥青混合料拌和过程实时监控[J].交通运输工程学报,2019,19(6):27-36.
CHEN Yan,GE Ling-bo,SONG Huan-sheng.Real-time monitoring of asphalt mixture mixing process[J].Journal of Traffic and Transportation Engineering,2019,19(6):27-36.
[4]李正中,周卫峰,张亚鹏,等.厂拌沥青混合料质量实时监控系统的研发及功能实现[J].中外公路,2012,32(3):329-332.
LI Zheng-zhong,ZHOU Wei-feng,ZHANG Ya-peng,et al.Development and function realization of real-time monitoring system for the quality of plant asphalt mixture[J].Journal of China & Foreign Highway,2012,32(3):329-332.
[5]张润利,贺 杰,刘力松,等.压实度连续检测系统信号处理的探讨[J].河北工业大学学报,2003,32(4):99-102.
ZHANG Run-li,HE Jie,LIU Li-song,et al.Analysis of signal disposal for continuous detector of compaction degree[J].Journal of Hebei University of Technology,2003,32(4):99-102.
[6]SI J Z.Intelligent compaction for quality control and acceptance for soil and base compaction through statistical analysis[J].Transportation Research Record,2018,2672(52):325-332.
[7]刘东海,高 雷,林 敏,等.公路沥青层振动压实质量实时监控与评估[J].河海大学学报(自然科学版),2018,46(4):307-313.
LIU Dong-hai,GAO Lei,LIN Min,et al.Real-time monitoring and assessment of compaction quality for highway asphalt pavements[J].Journal of Hohai University(Natural Sciences),2018,46(4):307-313.
[8]HU W,HUANG B S,SHU X,et al.Utilising intelligent compaction meter values to evaluate construction quality of asphalt pavement layers[J].Road Materials and Pavement Design,2017,18(4):980-991.
[9]MA Y,ZHANG Y,ZHAO W,et al.Assessment of intelligent compaction quality evaluation index and uniformity[J].Journal of Transportation Engineering,Part B,2022,148(2):04022024.
[10]高 畅.基于CBR的道路施工方案智能生成研究[D].武汉:华中科技大学,2021.
GAO Chang.Research on intelligent generation of road construction plan based on CBR[D].Wuhan:Huazhong University of Science and Technology,2021.
[11]易 飞.振动压路机振动加速度实时检测及数据处理研究[D].重庆:重庆交通大学,2011.
YI Fei.Vibratory roller vibration acceleration synchronous detection and data processing[D].Chongqing:Chongqing Jiaotong University,2011.
[12]董 刚,刘义彬,郑南翔.沥青路面施工过程质量信息实时监控系统研究[J].公路交通科技,2015,32(11):27-32,40.
DONG Gang,LIU Yi-bin,ZHENG Nan-xiang.Study on real-time monitoring system of asphalt pavement construction process quality information[J].Journal of Highway and Transportation Research and Development,2015,32(11):27-32,40.
[13]MA Z Y,ZHANG J X,PHILBIN S P,et al.Dynamic quality monitoring system to assess the quality of asphalt concrete pavement[J].Buildings,2021,11(12):577.
[14]宗序平.数理统计学及其应用:使用MATLAB[M].北京:机械工业出版社,2016.
ZONG Xu-ping.Mathematical statistics with applications in MATLAB[M].Beijing:China Machine Press,2016.
[15]王熠琛,郑 宏,李立云,等.基于统计理论与试验的地铁工程监测数据分析[J].岩土力学,2022,43(增1):443-451.
WANG Yi-chen,ZHENG Hong,LI Li-yun,et al.Analysis of monitoring data in metro construction based on statistical theory and test[J].Rock and Soil Mechanics,2022,43(S1):443-451.
[16]曾 娟,李守义,张洪昌.图像分区域多特征融合斜向车辆检测算法研究[J].公路交通科技,2020,37(8):99-107.
ZENG Juan,LI Shou-yi,ZHANG Hong-chang.Study on sub-region multi-feature image fusion oblique vehicle detection algorithm[J].Journal of Highway and Transportation Research and Development,2020,37(8):99-107.
[17]李明亮,李克钢,秦庆词,等.岩爆烈度等级预测的机器学习算法模型探讨及选择[J].岩石力学与工程学报,2021,40(增1):2806-2816.
LI Ming-liang,LI Ke-gang,QIN Qing-ci,et al.Discussion and selection of machine learning algorithm model for rockburst intensity grade prediction[J].Chinese Journal of Rock Mechanics and Engineering,2021,40(S1):2806-2816.
[18]周文欢,郭大进,李兴海.基于一致性校验方法的沥青路面施工质量过程控制[J].公路交通科技,2011,28(4):31-35.
ZHOU Wen-huan,GUO Da-jin,LI Xing-hai.Research on process control of asphalt pavement construction quality based on consistency checking method[J].Journal of Highway and Transportation Research and Development,2011,28(4):31-35.
[19]徐 磊.基于机器学习的沥青路面感知数据异常状态辨识与修复[D].西安:长安大学,2021.
XU Lei.Method based on machine learning for the identification and repair of abnormal states in asphalt pavement perception data[D].Xi’an:Chang’an University,2021.

Memo

Memo:
-
Last Update: 2023-01-30