[1] Vapnik V N.The nature of statistical learning theory[D].New York:Springer-Verlag,2000.
[2]Bühlmann P,Yu B.Boosting with the L2 Loss[J].Journal of the American Statistical Association,2003,98(462):324-339.
[3]Tibshirani R.Regression shrinkage and selection via the Lasso[J].Journal of the Royal Statistical Society:Series B(Methodological),1996,58(1):267-288.
[4]Efron B,Hastie T,Johnstone I,et al.Least angle regression[J].The Annals of Statistics,2004,32(2):407-499.
[5]Rosset S,Zhu J.Piecewise linear regularized solution paths[J].The Annals of Statistics,2007,35(3):1012-1030.
[6]Schlkopf B,Smola A J.Learning with kernels:support vector machines,regularization,optimization,and beyond[D].Cambridge:The MIT Press,2002.
[7]Muller K R,Mike S,Ratsch G.An introduction to kernel-based learning algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201.
[8]汪洪桥,孙富春,蔡艳宁,等.多核学习方法[J].自动化学报,2010,36(8):1037-1047.
WANG Hong-qiao,SUN Fu-chun,CAI Yan-ning,et al.On multiple kernel learning methods[J].Acta Automatica Sinica,2010,36(8):1037-1047.(in Chinese)
[9]Roth V.The generalized lasso[J].IEEE Transactions on Neural Networks,2004,15(1):16-28.
[10]Gao J,Kwan P W,Shi D.Sparse kernel learning with Lasso and Bayesian inference algorithm[J].Neural Networks,2010,23(2):257-264.
[11]Bach F R.Consistency of the group Lasso and multiple kernel learning[J].The Journal of Machine Learning Research,2008(9):1179-1225.
[12]Xu Z,Dai M,Meng D.Fast and efficient strategies for model selection of Gaussian support vector machine[J].Systems,Man,and Cybernetics,Part B:Cybernetics,2009,39(5):1292-1307.