|Table of Contents|

Reynolds number effect of three component coefficients in bridge deck using computational fluid dynamics(CFD)(PDF)

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2010年06期
Page:
44-49
Research Field:
Publishing date:
2010-12-20

Info

Title:
Reynolds number effect of three component coefficients in bridge deck using computational fluid dynamics(CFD)
Author(s):
LI Wei12 HU Zhao-tong1 LI Jia-wu1
1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Department of Civil Engineering Guangdong Power Vocational and Technical College, Guangzhou 510635, Guangdong, China
Keywords:
bridge engineering three component coefficients wind tunnel test Reynolds number effect numerical simulation
PACS:
U448.27
DOI:
-
Abstract:
This paper used CFD to calculate the physical parameters correlated to wind load on bridge, discussed the variation of three component coefficients with Reynolds number based on two typical bridge sections with FLUENT software for numerical simulation, established actual scale models, by selecting reasonable type of meshing form. Three different turbulence models were used in the analysis, the numerical calculation results were compared with the one of wind tunnel test. The results show that CFD can be used to calculate bridge sections with actual size so as to avoid the insufficient of scale model in wind tunnel test. The calculation has the characteristic of low cost, high speed and complete materials, which can provide a platform to simulate the real and ideal condition. 7 tabs, 6 figs, 15 refs.

References:

[1] 刘志文,陈政清,胡建华,等.大跨度双幅桥面桥梁气动干扰效应[J].长安大学学报:自然科学版,2008,28(6):55-59. LIU Zhi-wen,CHEN Zheng-qing,HU Jian-hua,et al.Aerodynamic interference effects of twin decks bridges with long span[J].Journal of Chang'an University:Natural Science Edition,2008,28(6):55-59.
[2]李加武,张宏杰,韩万水.斜拉桥风致响应的雷诺数效应[J].中国公路学报,2009,22(2):42-46. LI Jia-wu,ZHANG Hong-jie,HAN Wan-shui.Wind-induced response of cable-stayed bridge with consideration of Reynolds number effect[J].China Journal of Highway and Transport,2009,22(2):42-46.
[3]项海帆,林志兴.公路桥梁抗风设计指南[M].北京:人民交通出版社,1996.
[4]楼小峰.桥梁断面气动特性的数值模拟[D].上海:同济大学,2002.
[5]李加武.桥梁断面雷诺数效应研究[D].上海:同济大学,2003.
[6]俞载道.结构动力学基础[M].上海:同济大学出版社,1997.
[7]王统宁,刘建新,于泳波.近断层地震动作用下减隔震桥梁空间动力分析[J].交通运输工程学报,2009,9(5):20-25. WANG Tong-ning,LIU Jian-xin,YU Yong-bo.Dynamic analysis on the near-fault reduced isolation bridge space[J].Journal of Traffic and Transportation Engineering,2009,9(5):20-25.
[8]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
[9]祝志文,陈政清.数值模拟桥梁断面气动导数和颤振临界风速[J].中国公路学报,2004,17(3):41-45. ZHU Zhi-wen,CHEN Zheng-qing.Numerical simulation of bridge section aerodynamic derivatives and chatter critical wind speed[J].China Journal of Highway and Transport,2004,17(3):41-45.
[10]黄 滢.基于FLUENT软件的建筑物风场数值模拟[D].武汉:华中科技大学,2005.
[11]崔春义,孙占琦,赵颖华,等.三维复杂高层建筑抗震性能动力时程分析[J].广西大学学报:自然科学版,2009,34(5):115-126. CUI Chun-yi,SUN Zhan-qi,ZHAO Ying-hua,et al.Dynamic analysis on 3d complex high-rise buildings seismic performance[J].Journal of Guangxi University:Natural Science Edition,2009,34(5):115-126.
[12]白 华,李加武,胡兆同,等.近流线型断面静力三分力系数的雷诺数效应识别[J].建筑科学与工程学报,2007,24(4):60-63. BAI Hua,LI Jia-wu,HU Zhao-tong,et al.Identification of Reynolds number effect of tri-component force coefficient of streamline-liked section[J].Journal of Architecture and Civil Engineering,2007,24(4):60-63.
[13]Su C,Han D J,Yan Q S,et al.Wind-induced vibration analysis of the Hong Kong TingKau bridge[J].Proceedings of the Institution of Civil Engineers:Structures and Buildings,2003,156(3):263-272.
[14]Kiviluoma R.Coupled-mode buffeting and flutter analysis of bridges[J].Computers and Structures,1999,70(2):219-228.
[15]Ding Q,Lee P K K.Computer simulation of buffeting actions of suspension bridges under turbulent wind[J].Computers and Structures,2000,76(6):787-797.

Memo

Memo:
-
Last Update: 2010-12-20