[1]袁 明,吴晓娟,颜东煌,等.加载速率对钢纤维与超高性能混凝土黏结性能的影响[J].长安大学学报(自然科学版),2022,42(5):62-72.[doi:10.19721/j.cnki.1671-8879.2022.05.007]
 YUAN Ming,WU Xiao-juan,YAN Dong-huang,et al.Effect of loading rate on bond properties of steel fiber and ultra-high performance concrete[J].Journal of Chang’an University (Natural Science Edition),2022,42(5):62-72.[doi:10.19721/j.cnki.1671-8879.2022.05.007]
点击复制

加载速率对钢纤维与超高性能混凝土黏结性能的影响()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第42卷
期数:
2022年5期
页码:
62-72
栏目:
桥梁与隧道工程
出版日期:
2022-09-30

文章信息/Info

Title:
Effect of loading rate on bond properties of steel fiber and ultra-high performance concrete
文章编号:
1671-8879(2022)05-0062-11
作者:
袁 明1吴晓娟1颜东煌1刘 昀12黄 练1
(1. 长沙理工大学 土木工程学院,湖南 长沙 410114; 2. 湖南交通职业技术学院 路桥工程学院,湖南 长沙 410132)
Author(s):
YUAN Ming1 WU Xiao-juan1 YAN Dong-huang1 LIU Yun12 HUANG Lian1
(1. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China; 2. School of Road and Bridge Engineering, Hunan Communication Polytechnic, Changsha 410132, Hunan, China)
关键词:
桥梁工程 超高性能混凝土 钢纤维 黏结性能 加载速率 基体强度
Keywords:
bridge engineering ultra-high performance concrete steel fiber bonding performance loading rate matrix strength
分类号:
U446
DOI:
10.19721/j.cnki.1671-8879.2022.05.007
文献标志码:
A
摘要:
为深入了解超高性能混凝土(UHPC)的黏结性能,进一步明确钢纤维与UHPC基体黏结界面在不同加载速率下的破坏方式,以及影响纤维速率敏感性的因素,分析不同加载速率下UHPC基体中嵌入高强度钢纤维的单纤维拉拔性能,以更深入了解UHPC的黏结性能。试验变量为纤维类型(直圆形、端钩形、波纹形)、加载速率(0.5~5 mm/min)和基体强度(77.10、90.50、111.33 MPa),共制作27组试件。在不同加载速率下,对纤维的最大拉应力、拉拔能、等效黏结强度和平均黏结强度等参数进行表征和分析,并在扫描电子显微镜(SEM)下对纤维拔出后的表观形态以及基体隧洞形貌进行观察和探讨。试验结果表明:不同纤维的拉拔性能从大到小依次为直圆形纤维、端钩形纤维、波纹形纤维; 在SEM中观察到所有拔出纤维的表面上有不同程度的刮伤,附着微小的基体颗粒,基体隧洞产生了不同程度的微裂纹,端钩形纤维的拔出会造成拔出口附近的基体剥落; 纤维的速率敏感性与基体强度有关,随着基体强度增加,直圆形纤维的速率敏感性先减小后增大,最大拔出荷载、拉拔功、等效黏结强度、材料的强度利用率分别提升了42.9%、160.7%、160.8%、21%; 端钩形纤维的速率敏感性减小,但最大拔出荷载达到了226.71 MPa,材料的强度利用率高达134%; 波纹形纤维的速率敏感性增大,最大断裂荷载增加了8.9%,最大材料强度利用率达到68%; 纤维的速率敏感性还与纤维种类有关,其速率敏感性从大到小依次为波纹形纤维、端钩形纤维、直圆形纤维。此外,UHPC基体具有速率敏感性,其速率敏感性与直圆形纤维和端钩形纤维呈正相关,与波纹形纤维呈负相关。该研究可为深入了解钢纤维增强超高性能混凝土的力学性能提供参考。
Abstract:
In order to gain a deeper understanding of the bonding properties of UHPC, further define the failure mode of the bonding interface between the steel fiber and the UHPC matrix under different loading rates, and the factors effecting the fiber rate sensitivity. Single-fiber drawing performance of ultra-high performance concrete(UHPC)matrix embedded with high-strength steel fibers under different loading rates were studied. The test variables were fiber type(straight round, end-hooked, corrugated), loading rate(from 0.5 to 5 mm/min)and matrix strength(77.10, 90.50, 111.33 MPa). A total of 27 sets of samples were made. Under different loading rates, the maximum tensile stress, pull-out energy, equivalent bond strength and average bond strength of the fiber were characterized and analyzed. The apparent morphology of the fiber and the morphology of the matrix tunnel after fiber being pulled out were observed and discussed with the aid of the scanning electron microscope(SEM). The results show that the drawing performance of different fiber types is sorted from large to small as follows, straight round fiber, end-hooked fiber, corrugated fiber. And it is observed in SEM that all the pulled-out fibers have different degrees of scratches on the surface, and tiny matrix particles are attached. The matrix tunnels appear different degrees of micro-cracks, and the pull-out of the end-hooked fibers also cause matrix spalling near the pull-out exit. The speed sensitivity of the fiber is found to be related to matrix strength. With the increase of matrix strength, the speed sensitivity of the straight round fiber first decreases and then increases, the maximum pull-out load, pull-out work, the equivalent bond strength and strength utilization rate increase by 42.9%, 160.7%, 160.8% and 21%, respectively. The rate sensitivity of the end-hooked fiber reduces but the maximum pull-out load reaches 226.71 MPa, and the strength utilization rate of the material is as high as 134%. The rate sensitivity of the corrugated fiber increases, the maximum breaking load increases by 8.9%, and the maximum material strength utilization rate reaches 68%. The speed sensitivity of the fiber is also related to the type of fiber, the order from large to small of rate sensitivity of fibers is corrugated fiber, end-hooked fiber, straight round fiber. In addition, the UHPC matrix itself is rate-sensitive, and has a positive correlation with straight round and end-hooked fibers, and a negative correlation with corrugated fibers. A reference for further understanding the mechanical properties of steel fiber reinforced ultra-high performance concrete can be provided.5 tabs, 13 figs, 25 refs.

参考文献/References:

[1] 刘娟红,宋少民.活性粉末混凝土:配制、性能与微结构[M].北京:化学工业出版社,2013.
LIU Juan-hong,SONG Shao-min.Reactive powder concrete:Formulation,performance and microstructure[M].Beijing:Chemical Industry Press,2013.
[2]TAI Y S,EL-TAWIL S.High loading-rate pullout behavior of inclined deformed steel fibers embedded in ultra-high performance concrete[J].Construction and Building Materials,2017,148:204-218.
[3]KIM M J,YOO D Y.Analysis on enhanced pullout resistance of steel fibers in ultra-high performance concrete under cryogenic condition[J].Construction and Building Materials,2020,251:118953.
[4]程 俊,刘加平,张丽辉.超高性能混凝土纤维-基体黏结性能测试与机理分析[J].混凝土与水泥制品,2016(5):62-66.
CHENG Jun,LIU Jia-ping,ZHANG Li-hui.Test and mechanical analysis on fiber-matrix bonding properties of ultra-high performance concrete[J].China Concrete and Cement Products,2016(5):62-66.
[5]朱 平,池颜海,易笃韬,等.混杂钢纤维对钢纤维-超高性能混凝土界面黏结性能的影响[J].硅酸盐学报,2020,48(10):1669-1681.
ZHU Ping,CHI Yan-hai,YI Du-tao,et al.Influence of hybrid steel fibers on interfacial bond performance between steel fiber and ultrahigh-performance concrete[J].Journal of the Chinese Ceramic Society,2020,48(10):1669-1681.
[6]赵一鹤,孙振平,穆帆远,等.钢纤维对UHPC拉伸性能及其拔出行为的影响[J].建筑材料学报,2021,24(2):276-282.
ZHAO Yi-he,SUN Zhen-ping,MU Fan-yuan,et al.Effect of steel fibers on tensile properties of ultra-high performance concrete and its pullout behavior[J].Journal of Building Materials,2021,24(2):276-282.
[7]ABU-LEBDEH T,HAMOUSH S,HEARD W,et al.Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites[J].Construction and Building Materials,2011,25(1):39-46.
[8]ABU-LEBDEH T,HAMOUSH S,ZORNIG B.Rate effect on pullout behavior of steel fibers embedded in very-high strength concrete[J].American Journal of Engineering and Applied Sciences,2010,3(2)454-463.
[9]WILLE K, NAAMAN A E.Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete[J].ACI Materials Journal,2012,109(4):479-488.
[10]ROBINS P,AUSTIN S,JONES P.Pull-out behaviour of hooked steel fibers[J].Materials and Structures,2002,35(7):434-442.
[11]NAAMAN A E,NAJM H.Bond-slip mechanisms of steel fibers in concrete[J].ACI Materials Journal,1991,88(2):135-145.
[12]CUNHA V M C F,BARROS J A O,SENA-CRUZ J M.Pullout behavior of steel fibers in self-compacting concrete[J].Journal of Materials in Civil Engineering,2010,22(1):1-9.
[13]DONG J K,EI-TAWIL S,NAAMAN A E.Loading rate effect on pullout behavior of deformed steel fibers[J].ACI Materials Journal,2008,105(6):576-584.
[14]XU M,HALLINAN B,WILLE K.Effect of loading rates on pullout behavior of high strength steel fibers embedded in ultra-high performance concrete[J].Cement and Concrete Composites,2016,70:98-109.
[15]SUJIVORAKUL C,WAAS A M,NAAMAN A E.Pullout response of a smooth fiber with an end anchorage[J].Journal of Engineering Mechanics,2000,126(9):986-993.
[16]LARANJEIRA F,MOLINS C,AGUADO A.Predicting the pullout response of inclined hooked steel fibers[J].Cement and Concrete Research,2010,40(10):1471-1487.
[17]NAAMAN A E,SUJIVORAKUL C.Pull-out mechanisms of twisted steel fibers embedded in concrete[M]//BERNARD E S.Shotcrete:Engineering Developments.London:CRC Press,2020:197-203.
[18]SUJIVORAKUL C,NAAMAN A E.Evaluation of bond-slip behavior of twisted wire strand steel fibers embedded in cement matrix[J].Special Publication,2002,206:271-292.
[19]TAI Y S,EL-TAWIL S,CHUNG T H.Performance of deformed steel fibers embedded in ultra-high performance concrete subjected to various pullout rates[J].Cement and Concrete Research,2016,89:1-13.
[20]袁 明,梁 恩,颜东煌,等.配合比参数影响钢纤维-基体界面黏结性能的试验[J].长安大学学报(自然科学版),2020,40(6):57-66.
YUAN Ming,LIANG En,YAN Dong-huang,et al.Investigation on effect of mixture ratio on interfacial bonding properties of steel fiber-matrix[J].Journal of Chang'an University(Natural Science Edition),2020,40(6):57-66.
[21]CECS 13—2009,纤维混凝土试验方法标准[S].
CECS 13—2009,Standard for test methods of fiber reinforced concrete[S].
[22]NF P1810,National Addition to Eurocode 2 — Design of concrete structures:Specific rules for ultra-high performance fiber reinforced concrete(UHPFRC)[S].
[23]GB/T 17671—1999,水泥胶砂强度检验方法(ISO法)[S].
GB/T 17671—1999,Cement mortar strength inspection method(ISO method)[S].
[24]刘红彬,陈 健,贾玉丹,等.活性粉末混凝土的制备技术与力学性能研究[J].工业建筑,2008,38(6):74-78.
LIU Hong-bin,CHEN Jian,JIA Yu-dan,et al.Preparation technology and mechanical properties of reactive powder concrete[J].Industrial Construction,2008,38(6):74-78.
[25]LEE Y,KANG S T,KIM J K.Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix[J].Construction and Building Materials,2010,24(10):2030-2041.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):44.
[11]袁 晟,颜东煌,袁 明,等.养护方式和早龄期对钢纤维-UHPC基体界面黏结性能的影响[J].长安大学学报(自然科学版),2022,42(6):133.[doi:10.19721/j.cnki.1671-8879.2022.06.013]
 YUAN Sheng,YAN Dong-huang,YUAN Ming,et al.Effect of curing method and early age on interfacialbond properties of steel fiber-UHPC matrix[J].Journal of Chang’an University (Natural Science Edition),2022,42(5):133.[doi:10.19721/j.cnki.1671-8879.2022.06.013]

备注/Memo

备注/Memo:
基金项目:国家重点基础研究发展计划(“九七三”计划)项目(2015CB057706); 国家自然科学基金项目(52078054,51878074); 湖南省教育厅科学研究项目(18B140); 湖南省交通科技项目(201932); 湖南省研究生科研创新项目(CX20190650)
作者简介:袁 明(1980-),男,湖南醴陵人,副教授,工学博士,E-mail:mingyuan@caust.edu.cn。
更新日期/Last Update: 2022-09-30