[1]汤钧尧,马 涛,郑彬双,等.基于离散元方法的沥青路面温度应力计算方法及裂缝发育规律[J].长安大学学报(自然科学版),2022,42(5):12-20.[doi:10.19721/j.cnki.1671-8879.2022.05.002]
 TANG Jun-yao,MA Tao,ZHENG Bin-shuang,et al.Calculation method of thermal stress and cracks development law of asphalt pavement based on discrete element method[J].Journal of Chang’an University (Natural Science Edition),2022,42(5):12-20.[doi:10.19721/j.cnki.1671-8879.2022.05.002]
点击复制

基于离散元方法的沥青路面温度应力计算方法及裂缝发育规律()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第42卷
期数:
2022年5期
页码:
12-20
栏目:
道路工程
出版日期:
2022-09-30

文章信息/Info

Title:
Calculation method of thermal stress and cracks development law of asphalt pavement based on discrete element method
文章编号:
1671-8879(2022)05-0012-09
作者:
汤钧尧12马 涛1郑彬双1黄晓明1
(1. 东南大学 交通学院,江苏 南京 211189; 2. 上海市政工程设计研究总院(集团)有限公司,上海 200092)
Author(s):
TANG Jun-yao12 MA Tao1 ZHENG Bin-shuang1 HUANG Xiao-ming1
(1. School of Transportation, Southeast University, Nanjing 211189, Jiangsu, China; 2. Shanghai Municipal Engineering Design Institute(Group)Co., Ltd, Shanghai 200092, China)
关键词:
道路工程 温度应力计算 离散元方法 温度应力模拟试验 低温开裂
Keywords:
road engineering thermal stress calculation discrete element method TSRST virtual test low temperature cracking
分类号:
U416
DOI:
10.19721/j.cnki.1671-8879.2022.05.002
文献标志码:
A
摘要:
为合理表征沥青混合料的细观特性,并深入研究沥青混合料低温开裂过程中温度应力积累和裂缝扩展的细观机理,基于离散元程序PFC2D建立沥青混合料约束试件温度应力(TSRST)模拟试验方法。根据逆向体视学原理和概率论方法,引入沥青混合料三维体积级配与二维数量级配的转化关系,建立二维离散元虚拟试件; 结合沥青混合料各组分之间的接触行为特点,赋予不同的接触本构模型,借助室内试验测定集料和沥青砂浆的宏观参数,推导得到不同温度下各相材料间的细观接触参数; 通过TSRST模拟试验,分析试件内部温度场变化规律、温度应力曲线、细观接触力的分布特征以及低温开裂的细观机理。研究结果表明:TSRST离散元模拟和室内试验的结果具有较高的吻合度,断裂温度相对误差为3.7%,断裂强度相对误差为4.8%,TSRST模拟试验具有较高的准确性,能够作为试件低温抗裂性评价的可靠方法; 试件的破坏可以分为3个阶段:①起裂阶段,在转化点温度前,试件内部个别接触点接触失效,对结构整体受力状况影响较小; ②稳定扩展阶段,温度达到断裂温度前,随着温度的降低,接触力增加,裂缝沿试件薄弱部位发展,微裂缝数量缓慢稳定增长; ③不稳定扩展阶段,温度达到断裂温度后,短时间内温度应力下降了66%,裂缝总量增加了132条,微裂缝已汇聚成可见的宏观裂缝,并沿着构造相对薄弱的位置快速扩展,导致试件失去整体承载力。
Abstract:
To reasonably characterize the meso-characteristics of asphalt mixture, and furtherly investigate the meso mechanism of thermal stress accumulation and crack propagation in the process of low-temperature cracking of asphalt mixture, the virtual test method of asphalt mixture thermal stress restrained specimen test(TSRST)was established based on the discrete element program PFC2D. According to the principle of reverse stereology and the method of probability theory, the transformation relationship between three-dimensional volume gradation and two-dimensional quantitative gradation of asphalt mixture was introduced, and the two-dimensional discrete element virtual specimen was established. Combined with the characteristics of contact behavior between components of asphalt mixture, different contact constitutive models were given. The macro parameters of aggregate and asphalt mortar were measured by laboratory test, and the meso contact parameters between materials at different temperatures were deduced. Through TSRST virtual test, the variation law of internal temperature field, temperature stress curve, distribution characteristics of meso contact force and meso-mechanism of low temperature cracking were analyzed. The results show that TSRST discrete element simulation are in good agreement with the indoor test results. The relative error of fracture temperature is 3.7%, and the relative error of fracture strength is 4.8%, which proves that the TSRST virtual test has high accuracy, and can be used as a reliable method for the evaluation of low-temperature crack resistance of specimens. The failure of the specimen can be divided into three stages, ① crack initiation stage, before the transformation point temperature, the contact failure of individual contact points in the specimen has little impact on the overall stress state of the structure, ② stable propagation stage, before the temperature reaches the fracture temperature, with the decrease of temperature and the increase of contact force, the cracks develop along the weak parts of the specimen, and the number of micro cracks increases slowly and stably, ③ unstable propagation stage, after the temperature reaches the fracture temperature, the temperature stress decreases by 66% in a short time, and the total number of cracks increases by 132. The micro cracks have gathered into visible macro cracks and expand rapidly along the relatively weak position of the structure, resulting in the loss of the overall bearing capacity of the specimen.11 tabs, 13 figs, 28 refs.

参考文献/References:

[1] 黄晓明,李 昶,马 涛.路基路面工程[M].3版.南京:东南大学出版社,2016.
HUANG Xiao-ming,LI Chang,MA Tao.Road subgrade and pavement engineering[M].3rd ed.Nanjing:Southeast University Press,2016.
[2]于 斌,孙 悦.基于离散事件模拟沥青路面施工对环境的影响[J].交通运输工程学报,2018,18(4):12-21.
YU Bin,SUN Yue.Environmental impact of asphalt pavement construction based on discrete event simulation[J].Journal of Traffic and Transportation Engineering,2018,18(4):12-21.
[3]SUN Y R,DU C,GONG H R,et al.Effect of temperature field on damage initiation in asphalt pavement:A microstructure-based multiscale finite element method[J].Mechanics of Materials,2020,144(3):103367.
[4]DIN I,MIR M S,FAROOQ M A.Effect of freeze-thaw cycles on the properties of asphalt pavements in cold regions:A Review[J].Transportation Research Procedia,2020,48:3634-3641.
[5]张 磊.沥青混合料低温开裂及松弛特性的研究[D].哈尔滨:哈尔滨工业大学,2010.
ZHANG Lei.Asphalt mixture low-temperature cracking and relaxation characteristic research [D].Harbin:Harbin Institute of Technology,2010.
[6]刘占良,张 琛,许金良.高寒地区成品橡胶沥青混合料的低温性能及评价方法[J].长安大学学报(自然科学版),2019,39(6):31-38.
LIU Zhan-liang,ZHANG Chen,XU Jin-liang.Low-temperature performance and it's evaluation methods of finished product rubber asphalt mixture in alpine region[J].Journal of Chang'an University(Natural Science Edition),2019,39(6):31-38.
[7]HILLS J F.Prediction the fracture of asphalt mixes by thermal stresses [J].Bituminous Mixtures,1974:00126259.
[8]王端宜,张肖宁,王哲人.沥青路面-维温度应力场的理论计算[J].哈尔滨建筑大学学报,1990(4):129-135.
WANG Duan-yi,ZHANG Xiao-ning,WANG Zhe-ren.Theoretical calculation of one dimensional temperature stress field of asphalt pavement[J].Journal of Harbin University of Civil Engineering and Architecture,1990(4):129-135.
[9]MONISMITH C L,SECOR G A,SECOR K E.Temperature induced stresses and deformations in asphalt concrete[J].Association of Asphalt Paving Technologists Proceedings,1965,34:248-285.
[10]HASS R.A method for designing asphalt pavements to minimize low-temperature shrinkage cracking[M].Washington D C:Asphalt Institute,1973.
[11]郑健龙,周志刚,应荣华.沥青路面温度应力数值分析[J].交通科学与工程,2001,17(1):29-32.
ZHENG Jian-long,ZHOU Zhi-gang,YING Rong-hua.Numeral analysis of thermal stresses in asphalt pavement[J].Journal of Transport Science and Engineering,2001,17(1):29-32.
[12]CHEN X,AI C F,DU J H,et al.Effect of gradation segregation on low-temperature crack resistance of asphalt pavement using 3D DEM[J].Construction and Building Materials,2021,274(3):122060.
[13]张 壮.温度-应力双场耦合作用下沥青路面黏弹性力学响应多尺度分析[D].大连:大连理工大学,2021.
ZHANG Zhuang.Multiscale analysis of viscoelastic response of asphalt pavement under coupled temperature-stress fields[D].Dalian:Dalian University of Technology,2021.
[14]刘玉峰.高寒地区沥青路面温度场及温度疲劳分析研究[D].重庆:重庆交通大学,2020.
LIU Yu-feng.Study on temperature field and temperature fatigue of asphalt pavement in alpine region[D].Chongqing:Chongqing Jiaotong University,2020.
[15]郭 创,周玉博,邓展伟.大温差作用下寒区路面温度应力行为研究[J].华东交通大学学报,2020,37(5):23-30.
GUO Chuang,ZHOU Yu-bo,DENG Zhan-wei.Study on temperature stress behavior of pavement in cold area under large temperature difference[J].Journal of East China Jiaotong University,2020,37(5):23-30.
[16]许奥森.基于地区降温特点的沥青混合料温度应力研究[D].邯郸:河北工程大学,2020.
XU Ao-sen.Study on temperature stress of asphalt mixture based on regional cooling characteristics[D].Handan:Hebei University of Engineering,2020.
[17]张 东,何 亮,侯曙光,等.沥青混合料断裂数值模拟进展[J].公路交通科技,2017(12):5-12,22.
ZHANG Dong,HE Liang,HOU Shu-guang,et al.Advance in numerical simulation of asphalt mixture fracture[J].Journal of Highway and Transportation Research and Development,2017(12):5-12,22.
[18]陈 俊,黄晓明.基于离散元法的沥青混合料虚拟疲劳试验方法[J].吉林大学学报(工学版),2010,40(2):435-440.
CHEN Jun,HUANG Xiao-ming.Virtual fatigue test of asphalt mixture based on discrete element method[J].Journal of Jinlin University(Engineering and technology Edition),2010,40(2):435-440
[19]王江洋.细观尺度下钢桥面铺装用环氧沥青混凝土断裂行为研究[D].南京:东南大学,2013.
WANG Jiang-yang.Student on fracture behavior of epoxy asphalt concrete for steel bridge at meso-scale[D].Nanjing:Southeast University,2013.
[20]任皎龙.基于DEM的沥青混合料低温断裂特性的宏细观分析[D].南京:东南大学,2017.
REN Jiao-long.Macro-micro analysis for fracture characteristics of asphalt mixture using DEM at low-temperature [D].Nanjing:Southeast University,2017.
[21]MASAD E,JANDHYALA V K,DASGUPTA N,et al.Characterization of air void distribution in asphalt mixes using X-ray computed tomography[J].Journal of Materials in Civil Engineering,2002,14(2):122-129.
[22]张德育.基于离散元方法的沥青混合料虚拟永久变形试验研究[D].南京:东南大学,2013.
ZHANG De-yu.Experiment study on virtual permanent deformation of asphalt mixture based on discrete element method[D].Nanjing:Southeast University,2013.
[23]谢定义,林本海,邵生俊.岩土工程学[M].北京:高等教育出版社,2008.
XIE Ding-yi,LIN Ben-hai,SHAO Sheng-jun.Geotechnical engineering[M].Beijing:Higher Education Press,2008.
[24]JTG E20-2011,公路工程沥青及沥青混合料试验规程[S].
JTG E20-2011,Standard test methods of bitumen and bituminous mixtures for highway engineering [S].
[25]SONG S H,PAULINO G H,BUTTLAR W G.A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material [J].Engineering Fracture Mechanics,2006,73(18):2829-2848.
[26]马 骉,韦佑坡.高原寒冷地区沥青混合料劈裂强度影响因素[J].公路,2010,55(8):210-213.
MA Biao,WEI You-po.Influencing factors on splitting strength of asphalt mixture in plateau cold region[J].Highway,2010,55(8):210-213.
[27]WONG W G,ZHONG Y.Flexible pavement thermal stresses with variable temperature[J].Journal of Transportation Engineering,2000(126):46-49.
[28]张 垚.基于PFC3D的沥青混合料虚拟试验研究[D].南京:东南大学,2015.
ZHANG Yao.Research on virtual tests of asphalt mixture based on PFC3D[D].Nanjing:Southeast University,2015.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):1.

备注/Memo

备注/Memo:
国家自然科学基金项目(51778139)
作者简介:汤钧尧(1995),男,山东日照人,助理工程师,Email:tjyseu@163.com。 通讯作者:〖HTSS〗马涛(1981),男,江苏徐州人,教授,博士研究生导师,Email:matao@seu.edu.cn。
更新日期/Last Update: 2022-09-30