[1]占雪芳,王宪,刘凯乐,等.全无缝桥用新型路桥连接板拉伸变形性能试验[J].长安大学学报(自然科学版),2022,42(2):68-78.
 ZHAN Xue fang,WANG Xian,LIU Kai le,et al.Experimental on tensile performance of roadbridgelink slab of jointless bridges[J].Journal of Chang’an University (Natural Science Edition),2022,42(2):68-78.
点击复制

全无缝桥用新型路桥连接板拉伸变形性能试验()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第42卷
期数:
2022年2期
页码:
68-78
栏目:
桥梁与隧道工程
出版日期:
2022-03-15

文章信息/Info

Title:
Experimental on tensile performance of roadbridgelink slab of jointless bridges
作者:
占雪芳王宪刘凯乐雷健胡煜颉
中南林业科技大学 土木工程学院,湖南 长沙 410004
Author(s):
ZHAN Xuefang WANG Xian LIU Kaile LEI Jian HU Yujie
School of Civil Engineering, Central South University of Forestry and Technology,Changsha 410004, Hunan, China
关键词:
桥梁工程拉伸变形性能试验SHCC路桥连接板全无缝桥裂缝宽度裂缝间距三折线本构模型
Keywords:
bridge engineering tensile deformation performance experiment SHCC roadbridge link slab jointless bridge crack width crack spacing trilinear constitutive model
文献标志码:
A
摘要:
为掌握全无缝桥用应变硬化水泥基复合材料(SHCC)路桥连接板的受力性能,特别是在温度荷载作用下的拉伸变形能力,采用等效温变变形模拟温降荷载作用,从理论、试验和数值分析方面开展了温降时SHCC路桥连接板的受力性能研究。首先,建立了SHCC 路桥连接板的受力模型,推导了温降时SHCC路桥连接板内力和变形计算公式及公式使用条件。其次,开展了2组不同材料配比的哑铃形SHCC试件拉伸试验,获得了其本构关系;开展了室内SHCC板模型拉伸试验模拟温降荷载作用,测得了SHCC板底滑动摩擦因数,揭示了SHCC 路桥连接板的受力机理、裂缝分布规律、吸纳和传递变形的能力。最后,采用三折线本构模型模拟SHCC 材料的应力应变关系,建立了SHCC路桥连接板的有限元模型,分析了其温降时受拉性能。研究结果表明:SHCC试件一的初裂应力为2 MPa,极限应变达4.3%,满足全无缝桥路桥连接板强抗拉变形能力的需求;SHCC板在吸纳纵向变形10 mm时,其表面微裂缝多(约154条),裂缝间距小(2~10 cm),且开裂后裂缝宽度控制在80 μm以内,此时张拉端板应力为2.8 MPa,锚固端锚固力为196.6 kN,卸载后裂缝闭合,无纤维被拉出或拉断,验证了SHCC板的强吸纳变形能力,且完全满足全无缝桥变形和受力需求;有限元分析的荷载位移曲线的变化规律与实测值基本一致,说明该有限元分析采用的SHCC材料三折线本构模型是安全的,可为全无缝的SHCC路桥连接板设计与实施提供理论支撑。
Abstract:
To study the mechanical properties of SHCC (strain hardening cementitious composites) roadbridge link slab for jointless bridge, especially its tensile deformation capacity under temperature load. The equivalent temperature deformation was used to simulate the temperature load, and the tensile performance of SHCC roadbridge link slab under temperature drop were studied by means of theoretical, experimental and numerical analysis. Firstly,the calculation formula of internal force and deformation of SHCC roadbridge link slab under temperature drop was derived and the conditions of using the formula were limited. Secondly, the tensile test of two groups of dumbbells shaped SHCC specimens with different components were test and the constitutive models were derived. The indoor SHCC slab model was carried out, and the sliding friction factor at the bottom of SHCC plate was measured. The stress mechanism, crack distribution law and the ability of absorbing and transferring deformation of SHCC roadbridge link slab were revealed. Finally, the stressstrain relationship of SHCC material was simulated by using trilinear constitutive model, the tensile performance of SHCC roadbridge link slab under temperature drop was established by finite software (ABAQUS), and the tensile performance of SHCC slab under temperature drop was analyzed. The results show that the initial crack stress of SHCC specimen with mix proportion 1 is 2 MPa, and the ultimate strain is 4.3%, which meets the demand of the tensile deformation capacity of the full jointless bridge link slab. When the longitudinal deformation reaches 10 mm, there are nearly 154 micro cracks on the surface of SHCC slab, the crack spacing is small (2 to 10 cm), and the crack width is controlled within 80 μm. At the same time, the internal stress of tension end plate is 2.8 MPa, and the anchoring force of anchorage end is 196.6 kN. After unloading, the cracks closed, no fibers is pulled out or broken. This strong deformation absorbing ability of SHCC roadbridge link slab is verified, which fully meets the deformation and stress requirements of full jointless bridge. The load displacement curve of the finite element analysis is basically consistent with the measured value, which proved that the trilinear constitutive model of SHCC material used in numerical model analysis is safe. The theoretical support for the design and implementation of fully jointless SHCC roadbridge link slab are provided by the research results. 6 tabs, 9 figs, 29 refs.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):44.

更新日期/Last Update: 2022-04-13