[1]侯炜,宋一凡,马超.基于管冷系统的大体积混凝土水化热时变温度效应[J].长安大学学报(自然科学版),2021,41(4):65-77.
 HOU Wei,SONG Yi fan,MA Chao.Time varying temperature effect of hydration heat of massconcrete based on pipe cooling system[J].Journal of Chang’an University (Natural Science Edition),2021,41(4):65-77.
点击复制

基于管冷系统的大体积混凝土水化热时变温度效应()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第41卷
期数:
2021年4期
页码:
65-77
栏目:
桥梁与隧道工程
出版日期:
2021-07-15

文章信息/Info

Title:
Time varying temperature effect of hydration heat of massconcrete based on pipe cooling system
作者:
侯炜12宋一凡12马超2
(1. 长安大学 旧桥检测与加固技术交通运输行业重点实验室,陕西 西安 710064;2. 长安大学 公路学院, 陕西 西安 710064)
Author(s):
HOU Wei12 SONG Yifan12 MA Chao2
(1. Key Laboratory of Transport Industry of Bridge Detection Reinforcement Technology, Changan University,Xian 710064, Shaanxi, China; 2. School of Highway, Changan University, Xian 710064, Shaanxi, China)
关键词:
桥梁工程大体积混凝土水化热温度效应绝热温升内表温差
Keywords:
bridge engineering mass concrete hydration heat temperature effect adiabatic temperature rise temperature difference between internal and surface
文献标志码:
A
摘要:
为研究大体积混凝土水化反应过程中的时变温度效应,以黄土地区亚洲第二高墩天宁沟特大桥为研究对象,建立主墩承台有限元模型,分析大体积混凝土承台水化热时变温度效应;通过数值模拟优化现场管冷系统,并布置温度传感器实测大体积混凝土承台内表时变温度场,验证所建立模型的准确性;在此基础上,分析混凝土入模温度、导热系数和表面对流系数对大体积混凝土承台内部绝热温升、表面温升和内表温差的影响。研究结果表明:有限元计算所得大体积混凝土承台内部绝热温升与实测结果基本吻合,但其出现时间较实测值滞后约60 h;受环境温度和保温措施的影响,大体积混凝土承台表面实测温度波动较大,内表温差也呈波动状态;混凝土入模温度与大体积混凝土承台内表最高温和内表温差线性相关,较低的混凝土入模温度能迅速降低混凝土最大绝热温升,绝热温升越大,混凝土入模温度对其内表最大温升和内表温差的影响越大;大体积混凝土承台最大绝热温升出现时间与混凝土导热系数对数相关,混凝土导热系数越大,其最大绝热温升越大;绝热温升受混凝土表面对流系数的影响较小,但混凝土结构进入降温阶段后,其表面对流系数越大,内部温度降低速率越快;混凝土表面温升受其表面对流系数的影响较大,混凝土表面对流系数越小,其表面最大温升越大,结构进入降温阶段后,混凝土表面温度降低速率越快。
Abstract:
In order to study the timevarying temperature effect in the hydration process of mass concrete, Tianninggou Bridge in Loess Area, which is the second highest pier in Asia was taken as the research object, the finite element model of main pier bearing platform was established. The hydration heat and temperature effects of mass concrete bearing platform were analyzed. The accuracy of model was verified by measuring the temperature field on the inner and surface of mass concrete bearing platform with temperature sensors arranged on site. On this basis, the influences of concrete pouring temperature, thermal conductivity coefficient and surface convection coefficient on the internal adiabatic temperature rise, surface temperature rise and temperature difference between the inner and surface of mass concrete bearing platform were analyzed. The results show that the adiabatic temperature rise of mass concrete bearing platform calculated by the finite element method is consistent with the measured results, but its occurrence time is about 60 h later than the measured value. Due to the influence of environmental temperature and thermal insulation measures, the measured temperature on the surface of mass concrete bearing platform fluctuates greatly, and the temperature difference between the inner and surface of mass concrete bearing platform fluctuates. The concrete pouring temperature is linearly correlated with the maximum temperatures of inner and surface of mass concrete bearing platform, and temperature difference between the inner and surface of mass concrete bearing platform. The low concrete pouring temperature can quickly reduce the maximum adiabatic temperature rise in the mass concrete bearing platform. The greater the inner adiabatic temperature rise of concrete is, the greater the influences of concrete pouring temperature on the maximum temperature rises of inner and surface of concrete, and the temperature difference between the inner and surface of concrete. The occurrence time of the maximum adiabatic temperature rise inside the mass concrete bearing platform is related to the logarithm of concrete thermal conductivity coefficient. The larger the thermal conductivity coefficient of concrete is, the greater the maximum adiabatic temperature rise in the mass concrete bearing platform. The concrete surface convection coefficient has little influence on the adiabatic temperature rise of mass concrete bearing platform. However, after the structure enters the cooling stage, the greater the surface convection coefficient is, the faster the internal temperature reduction rate is. The concrete surface convection coefficient has a great influence on the temperature rise of concrete surface. The smaller the concrete surface convection coefficient is, the greater the maximum temperature rise of concrete surface is, and the faster the surface temperature decreases after the structure enters the cooling stage. 6 tabs, 22 figs, 33 refs.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):44.
[11]张湧,刘斌,贺拴海,等.桥梁大体积混凝土温度控制与防裂[J].长安大学学报(自然科学版),2006,26(03):43.
 ZHANG Yong,LIU Bin,HE Shuan-hai,et al.Temperature Control and Anti-crack of Massive Concrete in Large Bridges[J].Journal of Chang’an University (Natural Science Edition),2006,26(4):43.

更新日期/Last Update: 2021-08-12