[1]李嘉,刘凯,王洋.轻型组合桥面UHPC-薄面层层间非线性分析[J].长安大学学报(自然科学版),2021,41(4):56-64.
 LI Jia,LIU Kai,WANG Yang.Research on interface stress of UHPCTPO forlightweight composite bridge decks[J].Journal of Chang’an University (Natural Science Edition),2021,41(4):56-64.
点击复制

轻型组合桥面UHPC-薄面层层间非线性分析()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第41卷
期数:
2021年4期
页码:
56-64
栏目:
桥梁与隧道工程
出版日期:
2021-07-15

文章信息/Info

Title:
Research on interface stress of UHPCTPO forlightweight composite bridge decks
作者:
李嘉12刘凯13王洋12
(1. 湖南大学 土木工程学院,湖南 长沙 410082; 2. 湖南大学 风工程与桥梁工程湖南省重点实验室,湖南 长沙 410082; 3. 中国电建集团中南勘测设计研究院有限公司,湖南 长沙 410082)
Author(s):
LI Jia12 LIU Kai13 WANG Yang12
(1. School of Civil Engineering, Hunan University, Changsha 410082, Hunan, China; 2. Key Laboratory forWind and Bridge Engineering of Hunan Province, Hunan University, Changsha 410082, Hunan, China;3. Power China Zhongnan Engineering Corporation Limited, Changsha 410082, Hunan, China )
关键词:
桥梁工程组合桥面超高性能混凝土非线性有限元层间应力
Keywords:
bridge engineering composite bridge deck ultrahigh performance concrete nonlinear finite element method interface stress
文献标志码:
A
摘要:
为研究轻型组合桥面进入非线性受力阶段后,超高性能混凝土(UHPC)薄面层层间力学响应,以组合板试验为原型,采用ABAQUS软件建立钢UHPC薄面层的有限元模型。在已验证模型的基础上,开展组合板受弯全过程分析,将实桥设计车辆轴载通过UHPC层顶最大名义拉应力等效转化为组合板荷载,重点关注等效荷载下UHPC薄面层层间应力分布特征,通过与实测层间滑移对比得到推荐的层间接触系数,分别考虑低温与高温状况、复合等效水平与竖向荷载计算值,以得到与实际桥面受力更接近的应力计算值,在此基础上对比线性模型与非线性模型计算结果的差异,并与实测层间抗剪强度进行对比以验证其安全性。研究结果表明:仿真计算得到的跨中荷载位移曲线与试验结果吻合良好;弹性极限荷载和等效荷载分别为极限荷载的19.8%和28.5%,在等效荷载作用下组合板受力进入非线性;随摩擦因数增大,面层层底和UHPC层顶横向剪应力都随之增加,UHPC聚合物混凝土超薄磨耗层(TPO)层间摩擦因数取4.0时更接近真实状态;非完全连续模型在常温下层间剪应力、拉拔力分别较完全连续模型计算值低20.3%和37.4%,在高温下低13.6%和31.6%;线性桥梁节段模型剪应力计算值较非线性模型在常温下高5.0%,在高温下低4.0%,两者差别不大,可满足工程精度要求,且都低于实测抗剪强度值。建议实际工程设计采用线性完全连续模型计算薄面层与UHPC层层间应力。
Abstract:
In order to investigate the mechanical response of UHPCTPO overlay after the lightweight composite bridge deck entering nonlinear stage, a nonlinear finite element model of steelUHPCTPO overlay was established based on a composite plate test. The midspan loaddisplacement curves calculated by simulation was in good agreement with the test results. On this basis, the analysis of the whole process of bending of the composite plate was carried out, and the stress distributions characteristics of the UHPCTPO overlay rigidflexible structure were emphasized. Furthermore, the influence of the linear and the nonlinear model on calculation results was compared. The results show that elastic limit load and the equivalent load is the limit load of 19.8% and 28.5% respectively, under the equivalent load combination plate loading into nonlinear. When the friction coefficient between surface layer and UHPC layer is set at 4.0, it is closer to the real interlayer state. The horizontal shear stress and normal stress at room temperature are 20.3% and 37.4% lower than those calculated by the completely continuous model, and 13.6% and 31.6% lower than those calculated by the completely continuous model at high temperature respectively. The calculated shear stress of the linear bridge segment model is 5.0% higher than that of the nonlinear model at room temperature and 4.0% lower than that of the nonlinear model at high temperature. It is suggested that the linear completely continuous model is used to calculate the stress between the thin layer and UHPC layer in practical engineering design. 5 tabs, 12 figs, 23 refs.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):44.

更新日期/Last Update: 2021-08-12