[1]乔文靖,朱浩云,张岗,等.强腐作用下钢板组合梁的力学性能及失效机理[J].长安大学学报(自然科学版),2021,41(2):46-54.
 QIAO Wen jing,ZHU Hao yun,ZHANG Gang,et al.Mechanical properties and failure mechanism of steel platecomposite beams under strong corrosion[J].Journal of Chang’an University (Natural Science Edition),2021,41(2):46-54.
点击复制

强腐作用下钢板组合梁的力学性能及失效机理()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第41卷
期数:
2021年2期
页码:
46-54
栏目:
桥梁与隧道工程
出版日期:
2021-03-15

文章信息/Info

Title:
Mechanical properties and failure mechanism of steel platecomposite beams under strong corrosion
作者:
乔文靖朱浩云张岗杨帆张浩
(1. 西安工业大学 建筑工程学院,陕西 西安 710032; 2. 长安大学 公路学院,陕西 西安 710064)
Author(s):
QIAO Wenjing1 ZHU Haoyun1 ZHANG Gang2 YANG Fan1 ZHANG hao
(1. School of Civil & Architecture Engineering, Xian Technological University, Xian 710032, Shaanxi, China;2. School of Highway, Changan University, Xian 710064, Shaanxi, China)
关键词:
桥梁工程钢板组合梁有限元强腐极限荷载力学性能失效机理
Keywords:
bridge engineering steel plate composite beam finite element strong corrosion ultimate load mechanical property failure mechanism
文献标志码:
A
摘要:
针对钢板工业盐酸强腐导致钢板组合梁力学性能退化的过程,以三跨钢板组合梁为研究对象,基于腐蚀后钢材力学性能衰减过程,推导出强腐作用下双钢板组合梁的正弯矩抗弯承载力的计算公式。将荷载作用在腐蚀后的钢板组合梁上,参考已有受腐蚀钢材的力学性能试验数据和研究成果,建立有限元数值模型。分析3种腐蚀场景下钢板组合梁的破坏形态,获得不同腐蚀时间下钢板梁上所研究关键截面的荷载位移曲线,揭示钢板在浓度36%工业盐酸强腐下引起三跨钢板梁的破坏过程,拟合出钢板组合梁在不同腐蚀场景下,极限荷载随腐蚀时间变化的计算公式。研究结果表明:正弯矩抗弯承载力公式计算值和有限元计算值的相对偏差在4.31%~8.12%。当钢板腐蚀时间在6 h以内,钢板梁腐蚀区域中心截面的极限荷载和位移降低较明显;当钢板腐蚀时间从6 h增加到30 h时则降低较少;当钢板腐蚀时间增加至30 h之后,降低更为缓慢;钢板腐蚀时间达到48 h,钢板梁腐蚀区域中心截面的极限承载力和位移相当于未腐蚀截面的78.98%~87.11%和74.94%~76.54%。由于连续梁中跨边界约束较边跨约束强,中跨表现为混凝土桥面板的下挠和钢梁的鼓胀破坏,边跨表现为钢板组合梁的整体破坏。
Abstract:
Aimed at the degradation process of mechanical properties for steel plate composite beams under strong corrosion caused by industrial hydrochloric acid, a threespan steel plate composite beam was taken as the research object, based on the decay processes of mechanical properties of steel after corrosion, the bearing capacity calculation formula of positive bending moment of double steel plate composite beam under strong corrosion was deduced. The load was applied to the steel plate beam after corrosion, and the finite element model was established by referring to the existing mechanical performance test data and research results of corroded steel. The failure modes of steel plate composite beams under three corrosion scenarios were analyzed, and the loaddisplacement curves of the key sections were obtained on steel plate beams of different corrosion rates, the failure process of threespan steel plate beams caused by 36% industrial hydrochloric acid was revealed, and the calculation formula of ultimate load with corrosion time was derived on steel plate composite beams after corrosion. The results show that the relative deviation between formula values and finite element values of flexural capacity are 4.31% to 8.12%. When the corrosion time of steel is less than 6 hours, the ultimate load and displacement of the central section in the corrosion area of steel plate beams decrease obviously, when the corrosion time of steel increases from 6 hours to 30 hours, it decrease less, when the corrosion time of steel increases to 30 hours, it decrease more slowly. When the corrosion time of steel reaches 48 hours, the ultimate bearing capacity and displacement of the central section of the corrosion area of steel plate beams are equivalent to 78.82% to 87.11% and 74.94% to 76.54% of the uncoroded section. Because of the boundary constraint in the midspan of continuous beam is stronger than that of the side span, the midspan shows the down deflection of concrete bridge deck and the bulging failure of steel beam, while the side span shows the overall failure of steel plate composite beam. 1 tab, 8 figs, 28 refs.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):44.

更新日期/Last Update: 2021-04-02