[1]袁明,程晓东,黄练,等.混凝土桥梁裂缝扩展过程声发射信号的分形与小波包综合分析[J].长安大学学报(自然科学版),2021,41(2):34-45.
 YUAN Ming,CHENG Xiao dong,HUANG Lian,et al.Comprehensive analysis of fractal and wavelet packet of acoustic emissionsignal in process of concrete bridge crack propagation[J].Journal of Chang’an University (Natural Science Edition),2021,41(2):34-45.
点击复制

混凝土桥梁裂缝扩展过程声发射信号的分形与小波包综合分析()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第41卷
期数:
2021年2期
页码:
34-45
栏目:
桥梁与隧道工程
出版日期:
2021-03-15

文章信息/Info

Title:
Comprehensive analysis of fractal and wavelet packet of acoustic emissionsignal in process of concrete bridge crack propagation
作者:
袁明程晓东黄练颜东煌刘昀
(1. 长沙理工大学 土木工程学院,湖南 长沙 410114; 2. 湖南交通职业技术学院 路桥工程学院,湖南 长沙 410132)
Author(s):
YUAN Ming1 CHENG Xiaodong1 HUANG Lian1 YAN Donghuang1 LIU Yun12
(1. School of Civil Engineering, Changsha University of Science & Technology, Changsha 410114,Hunan, China; 2. School of Road and Bridge Engineering, Hunan CommunicationPolytechnic, Changsha 410132, Hunan, China)
关键词:
桥梁工程混凝土桥梁裂缝扩展声发射信号波形分形频谱特征小波包分解
Keywords:
bridge engineering concrete bridge crack propagation AE signal waveform fractal frequency spectrum characteristic wavelet packet decomposition
文献标志码:
A
摘要:
为量化混凝土桥梁裂缝从微观萌生到宏观扩展过程中声发射(AE)信号变化规律,开展了混凝土斜拉桥模型声发射试验研究。综合采用波形分形计算方法、快速傅里叶谱变换(FFT)、小波包分解方法,分析了试验中AE信号的分形盒维度、主频演变规律、频带能量分布特征和分形盒维度演变规律,进而研究混凝土桥梁裂缝扩展过程中AE信号分形和频谱演化特征。研究结果表明:混凝土桥梁裂缝扩展过程中由宏观裂纹产生的AE信号分形盒维度比微观裂纹产生的AE信号分形盒维度大,且前者分布范围更广,波形相对更为复杂;混凝土桥梁裂缝扩展过程中微裂纹萌生阶段产生的AE信号以中低频信号为主,而宏观裂纹阶段产生的AE信号以中高频为主;本次混凝土斜拉桥模型静力加载过程中所有AE信号能量集中分布在0~234.375 kHz频段,其中混凝土微裂纹萌生和发展阶段AE信号能量主要分布在0~125 kHz中低频段,随着加载过程的进行,AE信号能量分布区间逐步向中高频段演变;试验中采集到的AE信号采用小波包变化分解,重构信号的分形盒维度在0~265.625 kHz频带区间具有随着频率增大而波动上升的现象,上升趋势呈三阶多项式变化,并且在混凝土宏观裂纹阶段的三阶拟合误差更小,规律性更好。说明可以用信号分形盒维度的大小反映信号频率的高低。
Abstract:
In order to quantify the change rule of acoustic emission (AE) signal from microscopic initiation to macroscopic expansion of concrete bridge cracks, an AE test of concrete cablestayed bridge model was carried out. The fractal box dimension, main frequency evolution rule, frequency band energy distribution characteristics and fractal box dimension evolution rule of AE signal in the experiment were analyzed comprehensively by using waveform fractal calculation method, FFT transform and wavelet packet decomposition method. And then the fractal and spectrum evolution characteristics of AE signal in the crack propagation process of concrete bridge were studied. The results show that the fractal box dimension of AE signal waveform generated by macro cracks is larger than that generated by micro cracks during crack propagation of concrete bridge, and the former has a wider distribution range and relatively more complex waveforms. During the crack propagation process of concrete bridge, AE signals generated at the microcrack initiation stage are dominated by medium and low frequency signals, while AE signals generated at the macro crack stage are dominated by medium and high frequency signals. During the static loading process of the concrete cablestayed bridge model, all AE signal energy is concentrated in 0 to 234.375 kHz. During the initiation and development of concrete microcracks, AE signal energy is mainly distributed in the low and medium frequency bands of 0 to 125 kHz, and gradually evolves to the middle and high frequency bands with the loading process. The collected AE signals in the test are decomposed by wavelet packet change method. The fractal box dimension of the reconstructed signal fluctuates and rises as the frequency increases in the 0 to 265.625 kHz frequency band. This rising trend shows a thirdorder polynomial change, the thirdorder fitting error is smaller, and the regularity is better in the macrocrack stage of concrete, compared with that in the microcrack stage of concrete. The size of the signal fractal box can be used to reflect the signal frequency. 4 tabs, 16 figs, 33 refs.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):44.

更新日期/Last Update: 2021-04-02