[1]杨阳,何云东,王超,等.电液复合制动系统模式切换扭矩协调控制[J].长安大学学报(自然科学版),2020,40(6):107-117.
 YANG Yang,HE Yun dong,WANG Chao,et al.Torque coordination control of electrohydraulic brakesystem during mode transition[J].Journal of Chang’an University (Natural Science Edition),2020,40(6):107-117.
点击复制

电液复合制动系统模式切换扭矩协调控制()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第40卷
期数:
2020年6期
页码:
107-117
栏目:
汽车与机械工程
出版日期:
2020-11-15

文章信息/Info

Title:
Torque coordination control of electrohydraulic brakesystem during mode transition
作者:
杨阳何云东王超杨忠廖水平
(1. 重庆大学 机械传动国家重点实验室,重庆 400044; 2. 重庆大学 汽车工程学院,重庆 400044;3. 重庆长安汽车股份有限公司,重庆 400023)
Author(s):
YANG Yang12 HE Yundong2 WANG Chao2 YANG Zhong3 LIAO Shuiping3
(1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China;2. School of Automotive Engineering, Chongqing University, Chongqing 400044, China;3. Chongqing Changan Automobile Co., Ltd., Chongqing 400023, China)
关键词:
汽车工程电液复合制动扭矩协调控制混合动力汽车模式切换平顺性
Keywords:
automobile engineering electrohydraulic composite brake torque coordination control HEV mode transition ride comfort
文献标志码:
A
摘要:
为了减小混合动力汽车在制动模式切换时,因电机、液压制动系统响应特性差异而造成的整车冲击以及总制动力矩波动,以一款新型的四驱混合动力汽车为研究对象,对制动模式切换过程中的电机、液压制动力协调控制进行了研究。首先对汽车在不同制动模式时的动力学特性进行分析,基于汽车制动状态参数制定前后轴制动力分配控制策略,确定不同制动模式时的模式切换边界条件;然后基于制动踏板开度及其变化率制定液压制动力目标变化率模糊控制规则,对液压制动系统目标制动力的变化率进行控制;再根据液压制动系统输出的实际制动力对电机制动系统的目标制动力进行约束,从而减小两者响应特性的差异,实现制动模式切换的平稳过渡;最后在MATLAB/Simulink中建立了电液复合制动系统和整车前向仿真模型,设计循环工况以实现典型的制动模式切换工况,通过对协调和未协调控制的切换过程对比,验证提出的动态协调控制算法。研究结果表明:该动态协调控制策略能显著减小典型模式切换工况中的整车冲击和总制动力矩波动,在反映驾驶人制动意图的基础上提升了整车制动平顺性;在混合制动切换到纯液压制动模式工况时,整车冲击度由36.42减小至17.33 m/s3;在纯电制动切换到纯液压制动模式工况时,整车冲击度由77.60减小至4.06 m/s3。
Abstract:
In order to reduce the torque fluctuation and vehicle jerk during mode transition caused by differences in dynamic response of motor and hydraulic brake system, the coordination control strategy was studied based on a fourwheeldrive hybrid electric vehicle (HEV). Firstly, the dynamic characteristics in every mode were analyzed, and the braking force distribution control strategy was developed based on vehicle state parameters, and thus the boundary of different brake modes was determined. Then, the fuzzy logic control rules of the target change rate of hydraulic brake force were formulated based on brake pedal opening and its change rate. The target brake torque of motor brake system was restricted by the actual torque output and by the hydraulic brake system, and thus the differences in hydraulic brake system and motor brake system could be reduced, to realize a smooth transition of brake mode. Finally, the electrohydraulic brake model and vehicle forward simulation model were built in MATLAB/Simulink, and a cycle condition contained typical mode transition was designed, to verify the dynamic coordinated of the proposed control strategy. The results show that the proposed control strategy can significantly reduce vehicle jerk and torque fluctuation during mode transition, and the ride comfort is improved based on reflecting the brake intention of driver. When hybrid brake switch to pure hydraulic brake mode, the jerk of complete vehicle is reduced from 36.42 to 17.33 m/s3, and when pure electric brake switch to pure hydraulic brake mode, the vehicle jerk is reduced from 77.60 to 4.06 m/s3. 2 tabs, 15 figs, 24 refs.

相似文献/References:

[1]李耀华,马建,刘晶郁,等.永磁同步电机直接转矩控制电压矢量选择区域[J].长安大学学报(自然科学版),2012,32(01):0.
[2]赵 轩,贺伊琳,余 曼,等.基于MCGS的纯电动汽车智能仪表设计与实现[J].长安大学学报(自然科学版),2012,32(03):96.
 ZHAO Xuan,HE Yi-lin,YU Man,et al.Design and implementation method of intelligent instrument based on MCGS software for electric vehicle[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):96.
[3]李恒宾.基于ALE算法的汽车侧面气帘展开仿真[J].长安大学学报(自然科学版),2012,32(03):101.
 LI Heng-bin.Numerical simulation of automobile curtain airbag deployment based on ALE algorithm[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):101.
[4]袁 伟,付 锐,郭应时,等.基于马尔可夫链的驾驶人视觉转移特征[J].长安大学学报(自然科学版),2012,32(06):88.
 YUAN Wei,FU Rui,GUO Ying-shi,et al.Driver's visual transition characteristics based on the Markov chain[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):88.
[5]刘东辉,吴初娜.基于霍尔传感器的制动踏板行程测量系统设计[J].长安大学学报(自然科学版),2012,32(02):106.
 LIU Dong-hui,WU Chu-na.Design of brake pedal displacement measuring system based on Hall sensor[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):106.
[6]赵 伟,张春化,佟娟娟,等.EGR对甲醇HCCI发动机燃烧与排放的影响[J].长安大学学报(自然科学版),2012,32(04):88.
 ZHAO Wei,ZHANG Chun-hua,TONG Juan-juan,et al.Effect of EGR on combustion and emission of methanol HCCI engine[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):88.
[7]金 涛,马 静,王苑超,等.一种新型分布式汽车多检测线系统体系结构[J].长安大学学报(自然科学版),2012,32(04):93.
 JIN Tao,MA Jing,WANG Yuan-chao,et al.A new distributed multi-inspection controlling system architecture for vehicle[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):93.
[8]袁华智,朱 铭,李阳阳,等.柴油机生物柴油-甲醇混合燃料燃烧与排放特性[J].长安大学学报(自然科学版),2012,32(05):97.
 YUAN Hua-zhi,ZHU Ming,LI Yang-yang,et al.Combustion and emission characteristics of blended fuel of biodiesel and methanol for diesel engine[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):97.
[9]吴 晗,张春化,佟娟娟,等.EGR对甲醇HCCI发动机性能和运行范围的影响[J].长安大学学报(自然科学版),2012,32(05):102.
 WU Han,ZHANG Chun-hua,TONG Juan-juan,et al.Effect of EGR on performance and operation range of methanol HCCI engine[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):102.
[10]梁晓娟,李西秦,黎 苏,等.定容燃烧过程中苯与芳香烃排放规律[J].长安大学学报(自然科学版),2012,32(05):107.
 LIANG Xiao-juan,LI Xi-qin,LI Su,et al.Emissions of benzene & polycyclic aromatic hydrocarbons in constant volume combustion process[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):107.
[11]杨阳,陈晶,罗倡,等.基于系统效率优化的电液复合制动协调控制[J].长安大学学报(自然科学版),2020,40(3):117.
 YANG Yang,CHEN Jing,LUO Chang,et al.Electrichydraulic composite braking coordinated controlbased on system efficiency optimization[J].Journal of Chang’an University (Natural Science Edition),2020,40(6):117.

更新日期/Last Update: 2020-12-17