[1]袁明,梁恩,颜东煌,等.配合比参数影响钢纤维基体界面黏结性能的试验[J].长安大学学报(自然科学版),2020,40(6):57-66.
 YUAN Ming,LIANG En,YAN Dong huang,et al.Investigation on effect of mixture ratio on interfacialbonding properties of steel fibermatrix[J].Journal of Chang’an University (Natural Science Edition),2020,40(6):57-66.
点击复制

配合比参数影响钢纤维基体界面黏结性能的试验()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第40卷
期数:
2020年6期
页码:
57-66
栏目:
桥梁与隧道工程
出版日期:
2020-11-15

文章信息/Info

Title:
Investigation on effect of mixture ratio on interfacialbonding properties of steel fibermatrix
作者:
袁明梁恩颜东煌韦炳灯刘昀黄练
(1. 长沙理工大学 土木工程学院,湖南 长沙 410114; 2. 湖南交通职业技术学院 路桥工程学院,湖南 长沙 410132)〖JP〗
Author(s):
YUAN Ming1 LIANG En1 YAN Donghuang1 WEI Bingdeng1 LIU Yun12 HUANG Lian1
(1. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China;2. School of Road and Bridge Engineering, Hunan Communication Polytechnic, Changsha 410132, Hunan, China)
关键词:
桥梁工程活性粉末混凝土单丝拉拔试验钢纤维黏结性能微观形貌
Keywords:
bridge engineering reactive powder concrete (RPC) singlesided pullout test steel fiber bond property micro morphology
文献标志码:
A
摘要:
为研究活性粉末混凝土(RPC)材料中的相关配合比参数对钢纤维RPC基体界面黏结性能的影响规律,以硅灰、消泡剂和骨料平均粒径3个配合比参数为变量,制作了6组基体进行钢纤维单丝拉拔试验。根据相应评价指标对实测数据和拉拔荷载滑移曲线特征进行对比分析,并运用微观电子扫描技术(SEM)观测拉拔出的钢纤维表面微观形态、钢纤维拔出后的基体隧洞微观形貌以及基体表面微观形貌,进一步探讨试验参数对钢纤维RPC基体界面黏结性能的影响。研究结果表明:硅灰对钢纤维RPC基体界面黏结性能有明显影响,合适的硅灰掺量可以大幅度提升钢纤维RPC基体的平均黏结强度和等效黏结强度,当硅灰掺量(质量分数,下同)提高到30%,其等效黏结强度相对于20%硅灰掺量有所下降;消泡剂的掺入不仅没有改善钢纤维RPC基体界面黏结性能,反而产生了不利影响,掺入消泡剂会使基体的平均黏结强度有所提升,但等效黏结强度明显下降;由SEM观测钢纤维拔出后的基体隧洞形貌发现隧洞内存在孔洞缺陷,基体表面的大气泡数量减少而微小气泡增多,并且分布比大气泡更加密集;保持砂胶比一致,骨料平均粒径由0.2 mm增至0.4 mm时,其平均黏结强度和等效黏结强度变化不大,骨料平均粒径在0.2~0.4 mm范围内变化对钢纤维RPC基体界面黏结性能影响较小。该研究可为深入研究活性粉末混凝土材料的界面性质优化以及其配比提供参考。
Abstract:
In order to study the influence of the relevant mix parameters of reactive powder concrete (RPC) materials on the interfacial bonding properties of steel fiberRPC matrix,six groups of matrix were made for singlesided pullout tested with three mix parameters as variables included silica fume,defoamer and average size of aggregate. According to the corresponding evaluation indexes,the measured data and the characteristics of the pull loadslip curve were compared and analyzed. The micro morphology of the steel fiber surface,the matrix tunnel after fiber was pulled out, the micro morphology of the matrix surface were observed by scanning electron microscope (SEM),and the effect of the test parameters on the interfacial bonding properties of steel fiberRPC matrix was further discussed. The results show that silica fume has obvious influence on the interfacial bonding properties of steel fiberRPC matrix. The appropriate content of silica fume can greatly improve the average bond strength and equivalent bond strength of steel fiberRPC matrix,and the equivalent bond strength is reduced relative to the 20% silica fume content,when the content of silica fume (mass fraction, the same as below) increases to 30%. The addition of defoamer will not improve the interfacial bonding properties of steel fiberRPC matrix,but has adverse effects. With the addition of defoamer,the average bond strength of the matrix increases,but the equivalent bond strength decreases significantly. The SEM observation of the matrix tunnel after fiber was pulled out shows that there are hole defects in the tunnel,the number of large bubbles on the surface of the matrix decreases,while the number of small bubbles increases,and the distribution of small bubbles is more dense than the large bubbles. Keeping the cementsand ratio consistent,the average particle size of aggregate increases from 0.2 to 0.4 mm, and the particle size double,but the average bond strength and the equivalent bond strength has little change. The change of the average particle size of aggregate in the range of 0.2 to 0.4 mm has little effect on the interfacial bonding properties of steel fiberRPC matrix. It can provided a reference for the further study on the optimization of the interface properties and proportioning work of reactive powder concrete materials. 6 tabs, 13 figs, 25 refs.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):44.
[11]赵 秋,蔡文平,陈宝春.带平钢板剪力连接件的钢-RPC组合桥面板抗剪性能[J].长安大学学报(自然科学版),2017,37(02):64.
 ZHAO Qiu,CAI Wen-ping,CHEN Bao-chun.Shear performance of steel and RPC composite deck with smooth plate shear connector[J].Journal of Chang’an University (Natural Science Edition),2017,37(6):64.
[12]李立峰,李文全,石雄伟,等.不同养护条件下活性粉末混凝土局压承载力试验[J].长安大学学报(自然科学版),2018,38(02):50.
 LI Li feng,LI Wen quan,SHI Xiong wei,et al.Local compressive bearing capacity of reactive powder concrete under different curing conditions[J].Journal of Chang’an University (Natural Science Edition),2018,38(6):50.

更新日期/Last Update: 2020-12-17