[1]李加武,徐润泽,党嘉敏,等.喇叭口河谷地形基本风特性实测[J].长安大学学报(自然科学版),2020,40(6):47-56.
 LI Jia wu,XU Run ze,DANG Jia min,et al.Field measurement of basic wind characteristics oftrumpet river valley[J].Journal of Chang’an University (Natural Science Edition),2020,40(6):47-56.
点击复制

喇叭口河谷地形基本风特性实测()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第40卷
期数:
2020年6期
页码:
47-56
栏目:
桥梁与隧道工程
出版日期:
2020-11-15

文章信息/Info

Title:
Field measurement of basic wind characteristics oftrumpet river valley
作者:
李加武徐润泽党嘉敏朱长宇王子建
(1. 长安大学 公路学院,陕西 西安 710064; 2. 长安大学 风洞实验室,陕西 西安 710064)
Author(s):
LI Jiawu12 XU Runze12 DANG Jiamin12 ZHU Changyu12 WANG Zijian12
(1. School of Highway, Changan University, Xian 710064, Shaanxi, China;2. Wind Tunnel Laboratory, Changan University, Xian 710064, Shaanxi, China)
关键词:
桥梁工程风场特性现场实测风速剖面复杂地形
Keywords:
bridge engineering wind characteristic field wind speed monitoring wind profile complex terrain
文献标志码:
A
摘要:
为了研究复杂地形的风场特性,同时获得实际桥址处的风参数,以喇叭口河谷地形为研究对象,进行了为期6个月的现场实测。河流在该区域由山区进入平坦地区,因此该类河谷既有山区峡谷特点又有平原的地貌特点,地形地貌复杂。实测过程中使用三维扫描式激光雷达在河谷内进行多点观测,依托当地1座双塔斜拉桥进行测点布置。沿桥轴线方向每隔141 m设置1个虚拟测风塔,总计4个虚拟测风塔,即可得到这4个测点处的风速剖面。最终得到喇叭口河谷内不同位置的风剖面,以及不同位置、不同高度处的平均风速和风向,分析得到该地形下的风场特性。研究结果表明:在一定高度处风速有加速现象,此现象主要发生于河谷中下部,其成因与来流风向变化及地形有关;喇叭口河谷地形风剖面比《公路桥梁抗风设计规范》(JTG T 336001—2018)(简称规范)所列的模型复杂,难以用现有模型进行描述,但仍可以用幂函数进行描述;受来流及周围地形地貌影响,高风速时桥面高度处跨中位置的风速要大于两侧风速;桥面高度处不同位置的风向受来流方向和地形的影响存在差异;大气风向为西北方时,谷内风向角由近地面到高空变化较大,大气风向为东南方时,谷内风向角垂直方向上差异较小。所得观测结果与目前规范对风特性的描述存在较大差异,可对规范内容进行补充,同时也可为复杂地形下的风特性预测提供参考。
Abstract:
In order to further study the wind field characteristics of complex terrain, and at the same time obtain the wind parameters at the actual bridge site, the topography of the trumpet valley was taken as the research object for a sixmonth field measurement. In this area, rivers enter into flat areas from mountainous areas. Therefore, such river valleys have both the characteristics of mountain valleys and plains, and the landforms were complex. During the measurement, a threedimensional scanning wind lidar was used to make multipoint measurements in the river valley. The measurement points were arranged based on a local two towers cablestayed bridge. A virtual wind measuring tower was installed every 141 m along the axis of the bridge, for a total of 4 virtual wind towers. And wind profiles of these 4 measuring points were obtained. Finally, wind profiles at different locations, the average wind speed and direction at different locations and different heights in the trumpet river valley were obtained, and the wind field characteristics under the terrain were obtained through analysis. The results show that the wind speed is accelerated at a certain height, and this phenomenon mainly occurs in the middle and lower height of the river valley. The cause is related to the change of the incoming wind direction and the terrain. The wind profile of the trumpet valley is more complicated than the model listed in the windresistant design specification for highway bridges (JTG T 336001—2018), and it is difficult to describe with the existing model. But it can still be described with the power function. Affected by the incoming current and the surrounding terrain, at the height of the bridge deck, the wind speed at the midspan position is greater than the wind speed on sides when wind speed is high. Affected by the direction of the incoming flow and the terrain, there are differences in the wind direction at different locations at the height of the bridge deck. When the atmospheric wind direction is northwest, the wind direction in the valley changes greatly from low altitude to high altitude. When the atmospheric wind direction is southeast, the difference in the vertical direction of the wind direction in the valley is small. The results obtained in this paper are quite different from the current description of wind characteristics in the specification, so these results can supplement the content of the specification and also provide a reference for the prediction of wind characteristics in complex terrain. 2 tabs, 16 figs, 31 refs.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):44.

更新日期/Last Update: 2020-12-17