[1]杨阳,陈晶,罗倡,等.基于系统效率优化的电液复合制动协调控制[J].长安大学学报(自然科学版),2020,40(3):117-126.
 YANG Yang,CHEN Jing,LUO Chang,et al.Electrichydraulic composite braking coordinated controlbased on system efficiency optimization[J].Journal of Chang’an University (Natural Science Edition),2020,40(3):117-126.
点击复制

基于系统效率优化的电液复合制动协调控制()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第40卷
期数:
2020年3期
页码:
117-126
栏目:
汽车与机械工程
出版日期:
2020-05-15

文章信息/Info

Title:
Electrichydraulic composite braking coordinated controlbased on system efficiency optimization
作者:
杨阳陈晶罗倡汤清淞
(1. 重庆大学 机械传动国家重点实验室,重庆 400044; 2. 重庆大学 汽车工程学院,重庆 400044)
Author(s):
YANG Yang12 CHEN Jing2 LUO Chang2 TANG Qingsong2
(1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China;2. School of Automotive Engineering, Chongqing University, Chongqing 400044, China)
关键词:
汽车工程电液复合制动协调控制混合动力汽车效率优化
Keywords:
automobile engineering electrohydraulic compound braking coordinated control HEV efficiency optimization
文献标志码:
A
摘要:
为了进一步提高混合动力汽车电液复合制动系统协调性能和制动能量回收率,以一款新型双电机插电式混合动力汽车(PHEV)为研究对象,针对电机制动系统和液压制动系统工作特性的不同,提出符合其电液复合制动系统耦合工作特性的制动能量分配与控制策略。在保证制动安全性的前提下,以最大程度利用电机再生制动力为目标,建立电机损耗模型及可动态控制压力的液压制动系统模型,模拟实际电液复合制动系统的工作特性,通过控制电机制动系统电流实现损耗最小,并且调节速比实现电机与无级变速器(CVT)联合工作效率最优。利用比例积分微分(PID)控制调节液压制动系统高速开关阀,实现轮缸压力动态协调控制。制定基于阈值实时优化的制动力分配策略及基于制动强度修正的协调控制策略,利用MATLAB/Simulink和AMESim仿真平台对电机、液压制动系统及传动系统建立整车动力学模型,通过对连续制动及制动突变等制动工况进行联合仿真试验验证该控制策略的性能。研究结果表明:该控制策略可充分发挥双电机制动回收系统的优点,大幅提高制动能量回收率,〖JP2〗有效兼顾汽车的制动安全性和平顺性,减小制动力波动;初速度为60 km/h,制动强度由0.6突变至0.3时,最大冲击度由93.36下降为17.52 m/s3,满足汽车平顺性的要求;在城市车辆排放测试(UDDS)循环工况下,实际能量回收功率最高可增加0.32 kW。
Abstract:
In order to improve the coordination performance and braking energy recovery efficiency of electrichydraulic composite braking system of hybrid electric vehicle, a new type of plugin hybrid electric vehicle (PHEV) with dualmotor was taken as the research object. Aimed at the difference dynamic characteristics of the motor braking system and the hydraulic braking system, the braking force distribution strategy and coordinated control strategy based on the coupling characteristics were brought out. The motor loss model was built to achieve maximum use of the regenerative braking force on the premise of ensuring the braking safety, and combined the hydraulic brake system model which can dynamically control pressure to accurately simulate the actual electrichydraulic composite braking system working characteristic. By controlling the motor current, the loss can be minimized. And the optimization of motorcontinuously variable transmission (CVT) joint efficiency was achieved by ratio control. The wheel cylinder pressure of the hydraulic braking system can be controlled through the high speed switch valve by the PID control. The realtime optimal allocation strategy based on threshold method and coordinated control strategy based on braking strength correction were developed. Vehicle dynamics models of motor, hydraulic brake system and transmission in MATLAB/SimulinkAMESim was established, and the strategy was verified by cosimulation experiments of continuous braking strength and sudden braking strength. The results show that the control strategy can take the advantages of dualmotor braking recovery system, increase braking energy recovery rate, improve the braking safety and ride comfort of the vehicle effectively, and reduce braking force fluctuation. When initial velocity is 60 km/h and the braking strength is changed from 0.6 to 0.3, the jerk from 93.36 drops up to 17.52 m/s3, which satisfies the requirement of ride comfort. And the maximum actual energy recovery power can be increased by 0.32 kW under UDDS cycle conditions. 4 tabs, 13 figs, 24 refs.

相似文献/References:

[1]李耀华,马建,刘晶郁,等.永磁同步电机直接转矩控制电压矢量选择区域[J].长安大学学报(自然科学版),2012,32(01):0.
[2]赵 轩,贺伊琳,余 曼,等.基于MCGS的纯电动汽车智能仪表设计与实现[J].长安大学学报(自然科学版),2012,32(03):96.
 ZHAO Xuan,HE Yi-lin,YU Man,et al.Design and implementation method of intelligent instrument based on MCGS software for electric vehicle[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):96.
[3]李恒宾.基于ALE算法的汽车侧面气帘展开仿真[J].长安大学学报(自然科学版),2012,32(03):101.
 LI Heng-bin.Numerical simulation of automobile curtain airbag deployment based on ALE algorithm[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):101.
[4]袁 伟,付 锐,郭应时,等.基于马尔可夫链的驾驶人视觉转移特征[J].长安大学学报(自然科学版),2012,32(06):88.
 YUAN Wei,FU Rui,GUO Ying-shi,et al.Driver's visual transition characteristics based on the Markov chain[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):88.
[5]刘东辉,吴初娜.基于霍尔传感器的制动踏板行程测量系统设计[J].长安大学学报(自然科学版),2012,32(02):106.
 LIU Dong-hui,WU Chu-na.Design of brake pedal displacement measuring system based on Hall sensor[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):106.
[6]赵 伟,张春化,佟娟娟,等.EGR对甲醇HCCI发动机燃烧与排放的影响[J].长安大学学报(自然科学版),2012,32(04):88.
 ZHAO Wei,ZHANG Chun-hua,TONG Juan-juan,et al.Effect of EGR on combustion and emission of methanol HCCI engine[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):88.
[7]金 涛,马 静,王苑超,等.一种新型分布式汽车多检测线系统体系结构[J].长安大学学报(自然科学版),2012,32(04):93.
 JIN Tao,MA Jing,WANG Yuan-chao,et al.A new distributed multi-inspection controlling system architecture for vehicle[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):93.
[8]袁华智,朱 铭,李阳阳,等.柴油机生物柴油-甲醇混合燃料燃烧与排放特性[J].长安大学学报(自然科学版),2012,32(05):97.
 YUAN Hua-zhi,ZHU Ming,LI Yang-yang,et al.Combustion and emission characteristics of blended fuel of biodiesel and methanol for diesel engine[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):97.
[9]吴 晗,张春化,佟娟娟,等.EGR对甲醇HCCI发动机性能和运行范围的影响[J].长安大学学报(自然科学版),2012,32(05):102.
 WU Han,ZHANG Chun-hua,TONG Juan-juan,et al.Effect of EGR on performance and operation range of methanol HCCI engine[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):102.
[10]梁晓娟,李西秦,黎 苏,等.定容燃烧过程中苯与芳香烃排放规律[J].长安大学学报(自然科学版),2012,32(05):107.
 LIANG Xiao-juan,LI Xi-qin,LI Su,et al.Emissions of benzene & polycyclic aromatic hydrocarbons in constant volume combustion process[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):107.
[11]杨阳,何云东,王超,等.电液复合制动系统模式切换扭矩协调控制[J].长安大学学报(自然科学版),2020,40(6):107.
 YANG Yang,HE Yun dong,WANG Chao,et al.Torque coordination control of electrohydraulic brakesystem during mode transition[J].Journal of Chang’an University (Natural Science Edition),2020,40(3):107.

更新日期/Last Update: 2020-06-03