[1]肖成志,AMANE Zarihun Tarafa,王子寒,等.埋地柔性管道荷载响应及其加筋防护性能[J].长安大学学报(自然科学版),2020,40(3):63-74.
 XIAO Cheng zhi,AMANE Zarihun Tarafa,WANG Zi han,et al.Load response and performance of protection of buriedflexible pipes reinforced by geogrids[J].Journal of Chang’an University (Natural Science Edition),2020,40(3):63-74.
点击复制

埋地柔性管道荷载响应及其加筋防护性能()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第40卷
期数:
2020年3期
页码:
63-74
栏目:
桥梁与隧道工程
出版日期:
2020-05-15

文章信息/Info

Title:
Load response and performance of protection of buriedflexible pipes reinforced by geogrids
作者:
肖成志AMANE Zarihun Tarafa王子寒刘〓宽
(1. 河北工业大学 土木与交通学院,天津 300401; 2. 阿达玛科技大学 土木建筑学院,奥罗米亚州 阿达玛 1888 )
Author(s):
XIAO Chengzhi1 AMANE Zarihun Tarafa12 WANG Zihan1 LIU Kuan1
(1. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China;2. School of Civil Engineering and Architecture, Adama Science and Technology University,Adama 1888, Oromiya Region, Ethiopia)
关键词:
桥梁工程埋地管道模型试验土工格栅循环荷载加筋土
Keywords:
bridge engineering buried pipe model test geogrid cyclic loading reinforced soil
文献标志码:
A
摘要:
为了解决城市埋地管道频繁受外部荷载作用而损害的问题,提出在采用新型土工合成材料加筋防护埋地柔性管道的基础上,借助室内模型试验开展静载和循环荷载作用下埋地柔性管道的力学响应与变形特性研究,确定对管土体系产生较大破坏作用的荷载类型,并提出格栅加筋防护埋地管道的适用荷载水平范围,进而定量和定性地分析首层筋材埋深、筋材长度、筋材层间距和层数对土工格栅加筋防护埋地管道效果的影响,并确定合理的筋材铺设参数。研究结果表明:相比于同水平静载,循环荷载将会造成更大的土层沉降,但低水平循环荷载对埋地管道的影响较小,而高水平循环荷载会对管道产生更大的破坏作用;当采用单层格栅加筋防护时,对管道上方土体和管道最终变形量的控制作用不明显,当循环荷载水平在0~300 kPa范围时,[WTBX]筋材埋深为0.4B(B为加载板宽度)和筋材长度为5D(D为管道外径)时,单层加筋防护效果最优;针对管道埋深H=3D,选取筋材长度为5D和首层筋材埋深为0.4B的多层筋材防护,当筋材层间距0.5B和筋材层数N为3层时效果最优,[WT]加筋不仅能显著减缓土层沉降与管道变形,同时还能有效地控制最终的变形量,并能明显降低管周土压力,使加筋防护达到理想的效果。该成果可为长期处于类似交通荷载等复杂荷载作用下埋地管道的设计和防护提供理论支撑。
Abstract:
To solve the problem of frequently damaging the buried flexible pipes by outside force, the geosynthetic reinforced soil protection method was adopted to protect the flexible buried pipes. A series of laboratory model tests were performed to investigate the mechanical characteristics and deformation properties of flexible buried pipes,under static loads and cyclic loads and the performance of pipes reinforced by geogrids. The harmful load level was determined and the adaptable load range for reinforcement protection of pipes was presented. Furthermore, based on comprehensive comparison the quantitative and qualitative analysis were carried out to investigate the protection performance of buried pipes reinforced by geogrids under static and cyclic loading, and the optimum embedment parameters, such as embedment depth of the uppermost reinforcement, length of reinforcement, spacing of geogrid layers and geogrid layers of geogrids, were presented. The results show that the cyclic load can cause greater settlement of layer of the soil compare with static load. But cyclic load with low level has a small influence on the buried pipes, while the cyclic load with high level can cause great damage to pipe. Reinforcing by geogrids can reduce settlements of layers of soil and deformation of pipes,and alleviate the pressure of the soil around the pipe. In addition, for a level of loading around P is 0 to 300 kPa, the effect of protection with single layer reinforcement can be optimized, when the embedment depth of reinforcement and length of reinforcement is 0.4B (B is the width of load plate), 5D(D is the external diameter of pipe), respectively. However, the main effect of the single layer protection is not remarkably to control the ultimate deformation. For multilayer reinforcement with 3D buried depth of pipes, 5D length of reinforcement and 0.4B the embedment depth of top layer, the spacing of geogrid layers 0.5B, and geogrid layers N is 3, will not only delay settlement of the soil and the deformation of pipe significantly, but also control the ultimate deformation effectively. The multilayer reinforcement can significantly alleviate the pressure of the soil around pipe. The multilayer reinforcement can significantly alleviate the pressure of the soil around pipe, thus led the reinforcing to a desired result. The result of research provides theoretical support for the design and protection of buried pipelines under longterm complex loads such as traffic loads. 1 tab, 24 figs, 21 refs.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(3):44.

更新日期/Last Update: 2020-06-03