[1]胡大琳,徐怀存,张航,等.初始弯曲应力对冻融碳化后钢筋混凝土梁承载力影响分析[J].长安大学学报(自然科学版),2020,40(5):38-47.
 HU Da lin,XU Huai cun,ZHANG Hang,et al.Analysis on influence of initial bending stress on bearing capacity of reinforced concrete beam after freezethaw carbonization[J].Journal of Chang’an University (Natural Science Edition),2020,40(5):38-47.
点击复制

初始弯曲应力对冻融碳化后钢筋混凝土梁承载力影响分析()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第40卷
期数:
2020年5期
页码:
38-47
栏目:
桥梁与隧道工程
出版日期:
2020-09-15

文章信息/Info

Title:
Analysis on influence of initial bending stress on bearing capacity of reinforced concrete beam after freezethaw carbonization
作者:
胡大琳徐怀存张航陈峰查斌
1. 长安大学 公路学院,陕西 西安 710064; 2. 中交第一公路勘察设计研究院有限公司,陕西 西安 710075; 3. 在役长大桥梁安全与健康国家重点实验室,江苏 南京 211112
Author(s):
HU Dalin XU Huaicun ZHANG Hang CHEN Feng ZHA Bin
1. School of Highway, Changan University, Xian 710064, Shaanxi, China; 2. CCCC First HighwayConsultants Company Limited, Xian 710075, Shaanxi, China; 3. State Key Laboratory ofSafety and Health for Inservice Long Span Bridges, Nanjing 211112, Jiangsu, China
关键词:
桥梁工程承载力荷载试验钢筋混凝土梁弯曲应力有限元仿真
Keywords:
bridge engineering bearing capacity load test reinforced concrete beam bending stress finite element simulation
文献标志码:
A
摘要:
为研究弯曲应力对冻融碳化作用下在役钢筋混凝土梁桥承载力的影响,设计并制作了8片钢筋混凝土梁,采用自行设计的持荷装置对试验梁进行弯曲应力加载,并置于环境实验室中进行冻融碳化耦合腐蚀,再对腐蚀后的试验梁进行荷载试验。对不同弯曲应力水平下的钢筋混凝土试验梁进行裂缝分析、应变特征分析和承载力的研究,并建立有限元数值模型,将其与试验结果进行对比分析。研究结果表明:随着初始弯曲应力水平的增加,2组试验梁破坏形态由1条主裂缝变为多条裂缝并存,并且延性明显降低;跨中压应变斜率及拉应变均逐渐增大,跨中应变分布已经不能完全符合平截面假定。根据试验梁的荷载位移曲线可知,混凝土强度等级的提高明显提升了试验梁抗冻融碳化腐蚀的能力;弯曲应力水平增加会导致试验梁的承载力(屈服弯矩、极限弯矩)降低,且其大致呈线性关系。通过ANSYS有限元数值模拟与试验梁的承载力实测数据对比,归纳出冻融碳化作用下不同弯曲应力水平对钢筋混凝土梁材料本构的修正系数φ,可为严寒区在役钢筋混凝土桥梁承载力衰减分析评估提供参考和简化分析方法。
Abstract:
In order to research the influence of bending stress on the bearing capacity of existing reinforced concrete bridges under the interaction of freezethaw and carbonization, 8 reinforced concrete beams were designed and made, bending stress of the test beams was loaded with a selfdesigned load holding device, the test beams were placed in the environmental laboratory for freezethaw carbonization coupling corrosion, then load test was carried out on the test beams after the corrosion. The fracture analysis, strain characteristic analysis and bearing capacity of test beams at different bending stress levels were studied. The finite element numerical model of the reinforced concrete test beam was established, and analysis results were compared with that of experiment. The results show that with the increase of initial bending stress level of the two groups of test beams, the failure pattern of the test beams will change from one main crack to multiple cracks, ductility of the test beam is significantly reduced. The compressive strain slope and tensile strain values of the midspan will gradually increase, the midspan strain distribution no longer fully conforms to plane crosssection assumption. By analyzing the loaddisplacement curve of the test beam, when increase of concrete strength grade, the ability of the test beam to resist corrosion of carbonization and freezethaw improves significantly. As the bending stress level increases, the bearing capacity (yield bending moment, ultimate bending moment) of the test beams will decrease and will be approximately linear. Through the comparative analysis between ANSYS finite element numerical simulation and the measured data of bearing capacity of the test beams, modified coefficient φ of the constitutive behaviors of reinforced concrete beams under different bending stress levels after the interaction of freezethaw and carbonization is concluded. The results of the test and numerical analysis can provide a reference and a simplified analysis method for the bearing capacity analysis and evaluation of the reinforced concrete bridges servicing in the cold zone. 5 tabs, 13 figs, 32 refs.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):44.
[11]冯忠居,任文峰,李晋,等.后压浆技术对桩基承载力的影响[J].长安大学学报(自然科学版),2006,26(03):35.
 FENG Zhong-ju,REN Wen-feng,LI Jin.Bearing Capacity of Post-Grouting Pile Foundation[J].Journal of Chang’an University (Natural Science Edition),2006,26(5):35.
[12]宗雪梅,胡大琳,郑勇,等.既有桥梁技术状况评价及检算系数Z1的确定[J].长安大学学报(自然科学版),2006,26(04):63.
 ZONG Xue-mei,HU Da-lin,ZHENG Yong.Evaluation of technical state for existed bridge and determination of checking coefficient Z1[J].Journal of Chang’an University (Natural Science Edition),2006,26(5):63.
[13]叶征伟,胡大琳.无筋砌体双向偏心受压构件承载力计算[J].长安大学学报(自然科学版),2005,25(01):44.
 YE Zheng-wei,HU Da-lin.Calculation of bearing capacity of unreinforced biaxial eccentric compression masonry members[J].Journal of Chang’an University (Natural Science Edition),2005,25(5):44.
[14]冯忠居,魏炜.大直径钻埋预应力空心桩结构承载力计算[J].长安大学学报(自然科学版),2005,25(03):49.
 FENG Zhong-ju,WEI Wei.Bearing capacity of large diameter bored hollow pile of prestressing force concrete[J].Journal of Chang’an University (Natural Science Edition),2005,25(5):49.
[15]王钧利,贺拴海.钢筋混凝土高墩非线性稳定分析和模型试验[J].长安大学学报(自然科学版),2005,25(04):31.
 WANG Jun-li,HE Shuan-hai.Nonlinear stability and model test of reinforce concrete for high piers[J].Journal of Chang’an University (Natural Science Edition),2005,25(5):31.
[16]吕颖钊,贺拴海.在役桥梁承载力模糊可靠性的马尔科夫预测[J].长安大学学报(自然科学版),2005,25(04):39.
 Lv Ying-zhao,HE Shuan-hai.Prediction of Markov fuzzy reliability for existing bridge[J].Journal of Chang’an University (Natural Science Edition),2005,25(5):39.
[17]赵煜,贺拴海,宋一凡,等.在役索桁组合连续钢桥承载力综合评估方法[J].长安大学学报(自然科学版),2005,25(05):47.
 ZHAO Yu,HE Shuan-hai,SONG Yi-fan.Evaluation methodology for existing truss-cable composite continuous steel bridge[J].Journal of Chang’an University (Natural Science Edition),2005,25(5):47.
[18]李立峰,李文全,石雄伟,等.不同养护条件下活性粉末混凝土局压承载力试验[J].长安大学学报(自然科学版),2018,38(02):50.
 LI Li feng,LI Wen quan,SHI Xiong wei,et al.Local compressive bearing capacity of reactive powder concrete under different curing conditions[J].Journal of Chang’an University (Natural Science Edition),2018,38(5):50.
[19]渠广镇,周广利,黄平明,等.在役空心板桥梁拆除构件室内破坏试验[J].长安大学学报(自然科学版),2019,39(06):57.
 QU Guang zhen,ZHOU Guang li,HUANG Ping ming,et al.Inhouse destructive test of dismantled component of existing hollow slab bridge[J].Journal of Chang’an University (Natural Science Edition),2019,39(5):57.

更新日期/Last Update: 2020-10-12