[1]胡江洋,徐天宇,闫瑞朋,等.液压强夯法补强黄土路基压实质量控制方法[J].长安大学学报(自然科学版),2020,40(5):15-26.
 HU Jiang yang,XU Tian yu,YAN Rui peng,et al.Quality control method of hydraulic dynamic compaction reinforcing loess subgrade[J].Journal of Chang’an University (Natural Science Edition),2020,40(5):15-26.
点击复制

液压强夯法补强黄土路基压实质量控制方法()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第40卷
期数:
2020年5期
页码:
15-26
栏目:
道路工程
出版日期:
2020-09-15

文章信息/Info

Title:
Quality control method of hydraulic dynamic compaction reinforcing loess subgrade
作者:
胡江洋徐天宇闫瑞朋韩丹丹周志军
1. 中交第一公路勘察设计研究院有限公司,陕西 西安 710075; 2. 长安大学 公路学院,陕西 西安 710064; 3. 河南万里交通科技集团股份有限公司,河南 许昌 461000;4. 西安长大公路工程检测中心,陕西 西安 710064
Author(s):
HU Jiangyang XU Tianyu YAN Ruipeng HAN Dandan ZHOU Zhijun
1. CCCC First Highway Consultants Co., Ltd., Xian 710075, Shaanxi, China; 2. School of Highway, ChanganUniversity, Xian 710064, Shaanxi, China; 3. Henan Wanli Transportation Science & Technology GroupCo. Ltd, Xuchang 461000, Henan, China; 4. Xian Changda Highway Engineering TestingCenter, Xian 710064, Shaanxi, China
关键词:
道路工程液压夯实机分层压实度有效加固深度峰值加速度
Keywords:
road engineering hydraulic compactor layered compactness effective reinforcement depth peak acceleration
文献标志码:
A
摘要:
为提出一种黄土路基施工时不同深度处压实质量实时监测方法,依托黄延(黄陵—延安)高速公路扩能工程,首先引入液压加力系数,建立液压强夯法的夯击模型,进行液压强夯法补强黄土路基的室内足尺模型试验研究。考虑液压夯实机的夯锤落距和夯击次数对路基压实度的影响,通过在夯锤顶面中心处布置加速度传感器并在补强结束后分层开挖路基,获取夯锤单击峰值加速度和路基的分层沉降量,分析不同工况下夯锤峰值加速度与表层土体沉降量之间的关系,以土体分层沉降量达到表层土体沉降量5%处的路基深度为研究对象,通过线性内插法和回归分析法,分析不同工况下液压强夯法补强黄土路基的有效加固深度,确定路基分层压实度与夯锤峰值加速度的关系式。研究结果表明:夯锤峰值加速度与表层土体沉降量均随夯击次数和夯锤落距的增加而增加,在夯击次数达到6击和7击以上时期增长趋势都显著放缓,从定性上说明夯锤峰值加速度可以实时反映路基的压实质量;液压夯实机有效加固深度受夯锤落距的影响较夯击次数大,当夯击次数达到12击时,对应夯锤落距为2.2、1.6、0.7 m的有效加固深度分别为1.49、1.18、1.10 m;考虑有效加固深度范围,定量说明不同工况下夯锤峰值加速度与路基分层压实度间存在二次函数关系,将路基分层压实度按填筑深度加权平均得到了路基的平均压实度。
Abstract:
To provide a realtime monitoring method of the degree of compaction at different depths during the construction of the loess subgrade, the hydraulic force coefficient was introduced, and the hydraulic dynamic compaction model was established, rely on the capacity expansion project of Huangling to Yanan Expressway, and the indoor fullscale model test of the hydraulic compactor reinforcing the loess subgrade was carried out. Considering the impact of the dropping distance and the dropping numbers of the hydraulic rammer on the degree of compaction of the subgrade, the peak acceleration of rammer and the layered settlement of the subgrade were obtained, by arranging acceleration sensors in the center of the top surface of the rammer and excavating the subgrade layer by layer after the reinforcement. The correlation between the settlement of surface soil and the peak acceleration of hydraulic rammer under different working conditions were analyzed. The subgrade depth which settlement was 5% of the soil surface settlement was used as the research object, the effective reinforcement depth of hydraulic compactor in different working conditions were analyzed through linear interpolation method and regression analysis method. And the relationship between the degree of compaction of subgrade in layers and the peak acceleration of rammer was determined. The results show that the peak acceleration of rammer and the settlement of surface soil increase with the increase of dropping numbers and dropping distance, and the increase trend slows down obviously after 6 and 7 dropping numbers, which qualitatively indicates that the peak acceleration of rammer can reflect the compaction quality of subgrade in real time. The effective reinforcement depth of hydraulic compactor is more affected by the dropping distance than dropping numbers of rammer. When dropping numbers reaches 12, the effective reinforcement depth corresponding to the dropping distance of 2.2, 1.6 and 0.7 m is 1.49, 1.18 and 1.10 m, respectively. Considering the range of effective reinforcement depth, there is a quadratic function relationship between the peak acceleration of rammer and the degree of compaction of subgrade in layers under different working conditions. The average degree of compaction of subgrade is obtained by weighted average of the layered degree of compaction. 4 tabs, 13 figs, 29 refs.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):1.

更新日期/Last Update: 2020-10-12