[1]侯贵,王选仓,赵伦,等.寒冷地区桥面铺装层层间工作状态[J].长安大学学报(自然科学版),2018,38(04):39-47.
 HOU Gui,WANG Xuan cang,ZHAO Lun,et al.Interlaminar working state of bridge deck pavement in cold region[J].Journal of Chang’an University (Natural Science Edition),2018,38(04):39-47.
点击复制

寒冷地区桥面铺装层层间工作状态()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第38卷
期数:
2018年04期
页码:
39-47
栏目:
道路工程
出版日期:
2018-07-31

文章信息/Info

Title:
Interlaminar working state of bridge deck pavement in cold region
作者:
侯贵王选仓赵伦王文强侯平
(1. 长安大学 公路学院,陕西 西安 710064; 2. 内蒙古自治区交通建设工程质量监督局,内蒙古 呼和浩特 010020; 3. 佛山市路桥建设有限公司,广东 佛山 528000;4. 乌兰察布市机场快速通道建设管理办公室,内蒙古 乌兰察布 012001)
Author(s):
HOU Gui WANG Xuancang ZHAO Lun WAGN Wenqiang HOU Ping
(1. School of Highway, Changan University, Xian 710064, Shaanxi, China; 2. Inner Mongolia TrafficConstruction Engineering Quality Supervision Bureau, Hohhot 010020, Inner Mongolia, China;3. Foshan Road and Bridge Construction Co. Ltd., Foshan 528000, Guangdong, China;4. Construction and Management Office of Ulanchap Airport Expressway,Ulanchap 012001, Inner Mongolia, China)
关键词:
道路工程层间状态桥面铺装层力学响应工况分级沥青混凝土
Keywords:
road engineering interlayer state bridge deck pavement mechanical response working condition classification asphalt concrete
文献标志码:
A
摘要:
为了研究寒冷地区桥面铺装结构在交通荷载和温度应力耦合作用下复杂的层间受力状态,探究层间受力与各因素的响应关系,定量计算不同工况对层间力学响应的影响权重,最终得到基于实际工况下桥面铺装层层间工作状态,达到指导桥面铺装层间的设计、施工及检测目的。以北方寒冷地区的典型桥面铺装结构建立力学分析模型,引入针对沥青混凝土桥面铺装力学分析的有限元软件BISAR3.0程序,计算分析桥面铺装层层间剪应力分布特征。选取桥面铺装层在实际工作中层间剪应力影响因素中的桥面铺装层厚度、模量、桥梁纵坡、桥梁圆曲线半径、气温、超载6个主要实际工况,以最不利荷载位置为计算点位,分析了不同工况下铺装层层间力学行为。采用主客观赋权法相结合的层次变异系数法综合评价不同工况条件对桥面铺装层层间剪应力的影响程度,引入桥面层间组合工况评价指数I,建立基于实际工作环境下桥面铺装层层间组合工况分级标准,评价其层间工作状态。研究结果表明:桥面铺装层和桥面板层间承受很大应力,桥面铺装层层间最不利荷载位置位于力学计算模型(1.0δ,1.5δ,0.11 m)处(δ为轮胎当量半径);6种实际工况对层间影响程度差异明显,温度对层间剪应力影响所占比例最大,约为36.56%,铺装层模量的影响最小,仅为5.53%;组合工况分级共分3个等级,将评价指数I在0~50划分为1级,代表层间组合工况较差,层间剪应力代表值为0.26 MPa;3级时评价指数I为80~100,代表层间组合工况良好。
Abstract:
The purpose of this work was to study the complex interlaminar stress state under the coupling of traffic load and temperature stress in the bridge deck pavement structure in cold areas. The response of interlayer forces and various factors were explored, and the influence of different working conditions on the mechanical response between layers were quantitatively calculated. Finally, based on the operating conditions under the bridge deck pavement, the deck design, construction, and testing purposes were examined. A mechanical analysis model was built for a typical bridge deck pavement structure in northern cold regions. The finiteelement software BISAR3.0 was used to analyze the distribution characteristics of shear stress between the bridge deck pavement layers. The factors influencing interlaminar shear stress, such as the thickness, modulus of the bridge deck, bridge longitudinal radius, radius of the circular curve of bridge, air temperature, and overloading were examined. The most unfavorable load position was used as the calculated point, and the mechanical behaviors of the pavement with different working conditions were analyzed. The analytic hierarchy process coefficient of the variation method, combined with subjective and objective weighting methods, was used for a comprehensive evaluation of the influence of different working conditions on the shear stress between decks. Evaluation index I was applied to the bridge decks, and the working conditions were established based on the work environment. Under the bridge deck combination of working condition grading standards, the working status between layers was evaluated. The results show that the bridge deck pavement and bridge deck are under significant stress, and the most unfavorable load position of the bridge deck pavement of the mechanical calculation model is located at 1.0δ, 1.5δ, and 0.11 m, where δ is the tire equivalent radius. The influence of the six conditions on the interlayer is significant. The temperature has the greatest influence on the interlaminar shear stress, accounting for approximately 36.56% of the total influence on the interlaminar shear stress. The influence of the pavement modulus is the smallest, only 5.53%. The classification of combined conditions is divided into three levels. Evaluation index I at 0 to 50 is divided into level 1, representing a poor combination of conditions between layers, with an interlaminar shear stress representative value of 0.26 MPa. Evaluation index I is 80 to 100, at level 3, and the representative interlayer combination condition is good. 6 tabs, 11 figs, 21 refs.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(04):1.

更新日期/Last Update: 2018-08-03