[1]韩振强,沙爱民,胡力群,等.级配碎石基层沥青路面合理沥青层厚度[J].长安大学学报(自然科学版),2018,38(04):1-9.
 HAN Zhen qiang,SHA Ai min,HU Li qun,et al.Reasonable thickness of asphalt layer in graded crushed stone base asphalt pavement[J].Journal of Chang’an University (Natural Science Edition),2018,38(04):1-9.
点击复制

级配碎石基层沥青路面合理沥青层厚度()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第38卷
期数:
2018年04期
页码:
1-9
栏目:
道路工程
出版日期:
2018-07-31

文章信息/Info

Title:
Reasonable thickness of asphalt layer in graded crushed stone base asphalt pavement
作者:
韩振强沙爱民胡力群刘状壮
1. 长安大学 公路学院,陕西 西安 710064; 2. 长安大学 特殊地区公路工程教育部重点实验室,陕西 西安 710064)
Author(s):
HAN Zhenqiang SHA Aimin HU Liqun LIU Zhuangzhuang
1. School of Highway, Changan University, Xian 710064, Shaanxi, China; 2. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Changan University, Xian 710064, Shaanxi, China)
关键词:
道路工程沥青层厚度加速加载试验路面计算软件级配碎石基层沥青路面
Keywords:
road engineering asphalt layer thickness accelerated load testing pavement design software graded crushed stone base asphalt pavement
文献标志码:
A
摘要:
为得到适用于级配碎石基层沥青路面的合理沥青层厚度,当级配碎石基层厚度为20 cm时,利用BISAR 3.0程序计算不同沥青层厚度(4~36 cm)路表和面层底部应变、路基顶面压应变、沥青面层和级配碎石基层内不同深度剪应力,进一步根据不同结构层的应力应变疲劳极限确定不同沥青层厚度级配碎石基层沥青路面结构疲劳开裂、永久变形和车辙的病害状况,根据路面结构使用性能和耐久性实现沥青层厚度的优选。为验证薄沥青层级配碎石基层路面结构力学响应和长期使用性能,采用足尺路面加速加载试验(APT),对5 cm沥青层厚度路面结构的力学响应、长期使用性能及病害特征进行验证。结果表明:当级配碎石基层厚度为20 cm时,沥青层不宜过薄,沥青层厚度h1<5 cm时易产生过大的路表永久变形和自上而下的疲劳开裂;沥青层厚度为5~18 cm时,存在较大的面层层底拉应变、路基顶面压应变、沥青面层和级配碎石基层最大剪应力的不利受力组合;沥青层厚度h1≥34 cm时,可满足长寿命沥青路面的使用要求;若条件受限时,宜保证沥青层厚度h1≥18 cm;由APT试验结果可知,沥青层厚度为5 cm时,沥青层层底拉应变计算结果、路面结构剪应力计算结果与试验路实际使用状况基本符合,路面结构主要病害为车辙和永久变形,疲劳开裂并不明显,但路基顶面压应力计算值偏小,该值不宜作为路面结构设计依据。
Abstract:
In order to investigate the reasonable asphalt layer thickness for graded crushed stone base asphalt pavement, BISAR 3.0 program was adopted to calculate the strain at the surface and bottom of different asphalt layer thickness, the compressive strain on the top of the subgrade, the shear stress of different depth in the asphalt layer and graded crushed stone base when the thickness of base was 20 cm and the thickness of asphalt layer range was 4 to 36 cm. The fatigue cracking, permanent deformation and rutting distress on the graded crushed stone based asphalt pavement of different asphalt layer thickness were determined according to fatigue limit stress of different structural layer. And the optimization of the asphalt layer thickness was realized according to the usability and durability of pavement structure. In order to verify the mechanical response and longterm performance of the graded crushed stone based pavement structure of thin asphalt layer, the fullscale accelerated pavement testing (APT) was used to verify the calculation of mechanical response, longterm performance and disease characteristics of the 5 cm asphalt layer pavement structure. The results show that when the thickness of graded crushed stone base is 20 cm, the asphalt layer should not be too thin, and when the thickness of the asphalt layer is less than 5 cm, the permanent deformation of the road surface and the fatigue cracking from top to bottom are easy to occur. The pavement is more prone to experience excessive permanent deformation and fatigue cracking when the asphalt layer thickness is less than 5 cm. When the asphalt layer thickness ranges from 5 to 18 cm, there is an unfavorable combination of large tensile strain on the bottom of asphalt layer, compressive strain on the top of subgrade, and maximum shear stress in the asphalt surface layer and the graded crushed stone base. The requirement of the perpetual asphalt pavement can be satisfy when the asphalt layer thickness is more than 34 cm, noticeably, the asphalt layer thickness should not be less than 18 cm when conditions are limited. APT test results illustrate that the calculation results of tensile strain at the bottom of the asphalt layer and the shear stress of the pavement structure basically conform to the actual service conditions of the test road. The main diseases of the pavement structure are rutting distress and permanent deformation, and fatigue cracking is not obvious. However, the calculated value of compressive stress at the top of the subgrade is too small, which should not be used as the design basis for the pavement structure. 2 tabs, 12 figs, 28 refs.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(04):1.

更新日期/Last Update: 2018-08-03