[1]田宇翔,马 骉,王大龙,等.冻融循环作用下水泥稳定碎石抗冻特性[J].长安大学学报(自然科学版),2017,37(04):84-91.
 TIAN Yu-xiang,MA Biao,WANG Da-long,et al.Freeze resistance characteristics of cement-stabilized macadam under freeze-thaw cycle[J].Journal of Chang’an University (Natural Science Edition),2017,37(04):84-91.
点击复制

冻融循环作用下水泥稳定碎石抗冻特性()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第37卷
期数:
2017年04期
页码:
84-91
栏目:
冻土路基专栏
出版日期:
2017-07-14

文章信息/Info

Title:
Freeze resistance characteristics of cement-stabilized macadam under freeze-thaw cycle
作者:
田宇翔马 骉王大龙李 宁
1. 长安大学 特殊地区公路工程教育部重点实验室,陕西 西安 710064;2. 沈阳公路路政管理局,辽宁 沈阳 850000
Author(s):
TIAN Yu-xiang MA Biao WANG Da-long LI Ning
1. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, Shaanxi, China; 2. Shenyang Highway Administration Bureau, Shenyang 850000, Liaoning, China
关键词:
道路工程水泥稳定碎石冻融循环耐冻系数预测模型
Keywords:
road engineering cement-stabilized macadam freeze-thaw cycle freezeresistant coefficient prediction model
分类号:
U416
文献标志码:
A
摘要:
针对水泥稳定碎石(简称水稳碎石)等半刚性基层在青藏高原高海拔地区频繁冻融循环作用下,易造成材料强度与耐久性下降,影响路面整体使用性能问题。以拉萨—贡嘎机场专用公路新建工程为依托,从水稳碎石的抗冻融性能出发,采用室内试验模拟冻融循环过程,分析水稳碎石经不同次冻融循环作用后的强度损失规律,引入抗压强度耐冻系数与劈裂强度耐冻系数作为抗冻融性能评价指标,对比分析水泥用量、养生温度和冻融循环次数与水稳碎石耐冻系数的相关性;以水稳碎石耐冻系数为主参数,水泥用量、养生温度与冻融循环次数为变量,引入温度修正系数对基层养生温度影响进行修正,并对耐冻系数进行回归,建立二元线性预测模型,计算模型计算值与试验实测值的相对误差,验证模型的拟合精度。研究结果表明:水稳碎石的强度与耐冻系数随冻融循环次数的增加而降低,强度在0~5次冻融循环周期内下降较为明显;较高的水泥用量与养生温度可有效降低水稳碎石冻融后的强度损失,〖JP2〗建议工程中控制水泥用量为4%(质量分数,下同),同时保证养生温度大于10 ℃可有效提高材料抗冻融性能;所建二元线性预测模型具有较高的拟合精度和很好的再现性,可为水稳碎石抗冻融性能研究提供参考,为特殊地区半刚性基层设计施工提供技术指导。
Abstract:
Strength and durability of semi-rigid type bases, such as cement stabilized macadam base, will reduce under the action of frequent freeze-thaw cycle in high-altitude areas of Qinghai-Tibet Plateau, which affect the entire performance of pavement. Based on the new project of Lhasa to Gongga Airport Dedicated Road, starting from anti-freeze-thaw performance of cement-stabilized macadam under freeze-thaw cycle, this paper used indoor experiment to simulate freeze-thaw cycle and analyzed the strength loss law of cement-stabilized macadam base under different times of freeze-thaw cycle. Freeze-resistant coefficient of compressive strength and splitting strength was introduced as evaluation index to contrast and analyze the co-relationship among cement content, curing temperature, freeze-thaw cycle number and freeze-resistant coefficient of cement-stabilized macadam. Freeze-resistant coefficient was set as main parameter. Cement content, curing temperature, and freeze-thaw cycle time were set as variables. Temperature correction coefficient was introduced to revise the influence of primary curing temperature. Regression analysis was carried out on freeze-resistant coefficient and binary linear prediction model was established to calculate relative errors between calculated values and measured values, so as to verify the fitting precision. The results show that strength and freeze-resistant coefficient declines with the increase of freeze-thaw cycle number, and strength loss is more obvious when the freeze-thaw cycle number is 0 to 5. Higher cement content and curing temperature can effectively reduce the strength loss of freeze-thaw of cement-stabilized macadam, so the recommended cement content is 4% (mass fraction, the same below) and curing temperature should be kept above 10 ℃, which can effectively improve the anti-freeze-thaw properties of materials. The established binary linear prediction model has high fitting accuracy and good reproducibility, which can provide references for the anti-freeze performance research, and guide the design and construction of semi-rigid base in special areas.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(04):1.
[11]杨红辉,王建勋,郝培文,等.纤维在水泥稳定碎石基层中的应用[J].长安大学学报(自然科学版),2006,26(03):14.
 YANG Hong-hui,WANG Jian-xun,HAO Pei-wen,et al.Utilization of Fibre in Cement-Stabilized Aggregate Mixture[J].Journal of Chang’an University (Natural Science Edition),2006,26(04):14.
[12]丛卓红,闫红光,郑南翔.水泥稳定碎石用硬质砂岩关键性指标[J].长安大学学报(自然科学版),2011,31(05):12.
 CONG Zhuo-hong,YAN Hong-guang,ZHENG Nan-xiang.Key technical indexes about hard sandstone in cement stabilized aggregate mixture[J].Journal of Chang’an University (Natural Science Edition),2011,31(04):12.
[13]蒋应军,曹 帆,陈浙江,等. 垂直振动成型水泥稳定碎石疲劳特性及应用[J].长安大学学报(自然科学版),2014,34(04):1.
 [J].Journal of Chang’an University (Natural Science Edition),2014,34(04):1.
[14]李立寒,黄 璞,刘 栋.旋转与静压成型对水泥稳定碎石性能的影响[J].长安大学学报(自然科学版),2016,36(06):17.
 LI Li-han,HUANG Pu,LIU Dong.Impact on performance of cement stabilized macadam mixtures between gyratory compaction and static compaction methods[J].Journal of Chang’an University (Natural Science Edition),2016,36(04):17.
[15]黄优,刘朝晖,柳力,等.钢渣-水泥稳定碎石性能及环境影响试验[J].长安大学学报(自然科学版),2021,41(5):43.
 HUANG You,LIU Zhao hui,LIU Li,et al.Experimental study on properties and environmental impacts of steel slagcement stabilized aggregates[J].Journal of Chang’an University (Natural Science Edition),2021,41(04):43.

更新日期/Last Update: 2017-07-17