[1]孔令云,唐樊龙,徐 燕,等.紫外光谱法评价乳化沥青破乳过程[J].长安大学学报(自然科学版),2017,37(06):17-23.
 KONG Ling-yun,TANG Fan-long,XU Yan,et al.Evaluation of emulsified asphalt demulsification process by UV spectrum method[J].Journal of Chang’an University (Natural Science Edition),2017,37(06):17-23.
点击复制

紫外光谱法评价乳化沥青破乳过程()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第37卷
期数:
2017年06期
页码:
17-23
栏目:
道路工程
出版日期:
2017-11-20

文章信息/Info

Title:
Evaluation of emulsified asphalt demulsification process by UV spectrum method
文章编号:
1671-8879(2017)06-0017-07
作者:
孔令云唐樊龙徐 燕赵品晖张玉贞
1. 中国石油大学(华东) 化学工程学院,山东 青岛 266580;2. 重庆交通大学 交通土建工程材料国家地方联合工程实验室,重庆 400074;3. 中国科学院青岛生物能源与过程研究所,山东 青岛 266555;4. 内江市交通运输局,四川 内江 641000
Author(s):
KONG Ling-yun TANG Fan-long XU Yan ZHAO Pin-hui ZHANG Yu-zhen
1. College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China; 2. National & Local Joint Engineering Laboratory of Transportation and Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China; 3. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266555, Shandong, China; 4. Neijiang Transportation Bureau, Neijiang 641000, Sichuan, China
关键词:
道路工程乳化沥青Lambert-Beer定律紫外光谱破乳速度
Keywords:
road engineering emulsified asphalt Lambert-Beer law UV spectrum demulsification speed
分类号:
U414
文献标志码:
A
摘要:
为了研究和评价乳化沥青的破乳过程,将现代分析仪器及化学计量算法应用到道路材料学研究领域,以紫外可见光谱和Lambert-Beer定律为基本原理,采用CR22G Ⅱ高速离心机通过给乳化沥青附加离心场加速破乳,并引入紫外吸光度和乳化剂浓度这2个参数表征乳化沥青的破乳过程。在不同测试条件下,对乳化沥青以及经过集料拌和后的乳化沥青进行破乳过程验证。研究结果表明:乳化沥青破乳模拟方法显著影响破乳试验结果的精度,未经处理的乳化沥青上层清液浑浊,溶液中含有大量悬浮的沥青颗粒,对试验结果产生较大影响,导致紫外光谱测量结果紊乱,无法表征乳化沥青破乳过程;而经过处理后的上层清液含有极少悬浮状沥青颗粒,溶液清澈透明,所得紫外光谱图线性良好,与实际吻合。乳化沥青在高速离心场下能加速破乳,随着时间的推移,体系中的乳化剂浓度不断上升至一个定值,具体在紫外光谱图中表现为吸光度值不断上升直至趋于平稳状态,也即达到破乳平衡状态。对有紫外吸光度的乳化剂采用适当的乳化沥青加速破乳条件,用紫外分光光计法,并将所取上层清液中的乳化剂浓度控制在一定的范围内,根据紫外光谱图及Lambert-Beer定律能够精确描述乳化沥青破乳全过程;该方法可有效区分不同集料/乳化沥青系统的破乳速度。
Abstract:
In order to research and evaluate the demulsification process of emulsified asphalt, modern analysis instruments and chemical measurement algorithm were applied to the field of road materials by omics technology. With UV spectrum and Lambert Beer law as the basic principle, CR22G Ⅱ high-speed centrifuge was adopted to accelerate the demulsification by adding centrifugal field to emulsified asphalt, two parameters, involving UV absorbance and the concentration of emulsifier, were introduced to character the demulsification process of emulsified asphalt. And under different test conditions, the demulsification process of emulsified asphalt and emulsified asphalt after aggregate mixing was verified. The results show that emulsified asphalt demulsification simulation method significantly affects the accuracy of demulsification test results. Untreated emulsified asphalt supernatant is cloudy. The solution containing a large amount of suspension asphalt particles has great influence on the test results, leading to the disorder of the UV spectrum measurement, which can not characterize the emulsification process of emulsified asphalt. And after processing, the supernatant liquid has few slurry asphalt particles, the solution is clear and transparent, and the UV spectra obtains good linear in accordance with the practicality. Emulsified asphalt in high speed centrifugal field can accelerate the demulsification. As time goes on, the concentration of emulsifier in the system continues to rise to a constant value, which is manifested in UV spectrum as the absorbance value continues to rise until it reaches a steady state, that is, reaches the demulsification equilibrium state. For emulsifier with UV absorbance, the use of appropriate emulsified asphalt can accelerate the demulsification conditions to accelerate the demulsification conditions. The concentration of emulsifier in the supernatant is controlled within a certain range by UV spectral light meter. According to the UV spectra and Lambert-Beer law, the whole process of emulsified asphalt demulsification can be accurately described. This method can effectively distinguish different aggregate/demulsification velocity of emulsified asphalt system.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(06):1.
[11]耿九光,陈忠达,李龙,等.水泥乳化沥青冷再生混合料配合比设计水泥乳化沥青冷再生混合料配合比设计[J].长安大学学报(自然科学版),2009,29(01):10.
 GENG Jiu guang,CHEN Zhong da,LI Long,et al.Mixing design of cementemulsifiedasphaltcold recycledmixture(CEACRM)[J].Journal of Chang’an University (Natural Science Edition),2009,29(06):10.
[12]武建民,李洪珍.水泥稳定碎石基层高粘结性透层油的开发与应用[J].长安大学学报(自然科学版),2014,34(05):15.
 [J].Journal of Chang’an University (Natural Science Edition),2014,34(06):15.
[13]杨玉晶,孔令云.集料化学成分/乳化沥青体系传质吸附[J].长安大学学报(自然科学版),2021,41(3):22.
 YANG Yu jing,KONG Ling yun.Mass transfer and adsorption of aggregate chemicalcomposition/emulsified asphalt system[J].Journal of Chang’an University (Natural Science Edition),2021,41(06):22.

备注/Memo

备注/Memo:
收稿日期:2017-04-22 基金项目:国家自然科学基金项目(51508062);重庆市基础科学与前沿技术研究项目(cstc2017jcyjAX0367);重庆市教委科学技术研究项目(KJ1500508) 作者简介:孔令云(1976-),女,江苏如皋人,教授,工学博士,E-mail: 43112443@qq.com。
更新日期/Last Update: 2017-12-18