[1]洪新民,郭文华,熊安平.山区峡谷风场分布特性及地形影响的数值模拟[J].长安大学学报(自然科学版),2017,37(05):56-64.
 HONG Xin-min,GUO Wen-hua,XIONG An-ping.Numerical simulation of distribution characteristic of wind fields and terrain’s influence in mountain canyon[J].Journal of Chang’an University (Natural Science Edition),2017,37(05):56-64.
点击复制

山区峡谷风场分布特性及地形影响的数值模拟()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第37卷
期数:
2017年05期
页码:
56-64
栏目:
桥梁与隧道工程
出版日期:
2017-09-30

文章信息/Info

Title:
Numerical simulation of distribution characteristic of wind fields and terrain’s influence in mountain canyon
作者:
洪新民郭文华熊安平
中南大学 土木工程学院,湖南 长沙 410004
Author(s):
HONG Xin-min GUO Wen-hua XIONG An-ping
School of Civil Engineering, Central South University, Changsha 410004, Hunan, China
关键词:
桥梁工程空间分布特性峡谷地形风速放大系数计算流体动力学
Keywords:
bridge engineering spatial distribution characteristic canyon terrain wind speed magnification coefficient computation fluid dynamics
分类号:
U442.4
文献标志码:
A
摘要:
为揭示山区峡谷风场的空间分布特性以及峡谷地形对谷内风场特性分布的影响,根据山区峡谷的地形特点,在AutoCAD中将峡谷的几何模型离散为高程点云,利用逆向工程软件Imageware将高程点云拟合成峡谷地形曲面,并导入Gambit中生成满足要求的计算模型;应用FLUENT软件选取适合山区风场的Realizable 模型,采用稳定性好的SIMPLE算法对峡谷风场特性进行数值模拟;最后根据峡谷地形特点和其影响参数,提出峡谷风速放大系数计算公式,并采用多个算例验证其正确性。研究结果表明:山区峡谷风剖面的轮廓线可以分成3段,不能套用平原地区常用的幂函数模型,并且峡谷风剖面的轮廓线具有明显拐点,风速增大段的风剖面轮廓线应采用线性函数与幂函数共同模拟;峡谷内中间位置风剖面最大风速大于两侧风剖面最大风速,其相应的风速拐点高度也较大;峡谷内同一高度观测点的风速在峡谷横断面上成抛物线变化,距离两侧山体约60 m处风速达到最大值;峡谷越窄,两侧山峰越高,峡谷内风场的“峡谷效应”越明显;风剖面风速拐点高度与峡谷高宽比成反比,峡谷高宽比越大,风剖面风速拐点高度就越小;该公式可推算山区峡谷内任意高度的风速,可为跨越山区峡谷的桥梁抗风设计基准风速的计算提供简便方法。
Abstract:
In order to reveal the spatial distribution characteristics of wind fields in mountain canyon and the effect of canyon topography on the distribution characteristics of wind field in valley, according to the topographic features of mountain valleys, the digital geometry of canyon was discreted into elevation points in AutoCAD, and the elevation points were used to synthesize the canyon terrain and surface by using reverse engineering software Imageware, which were imported into Gambit to generate computational models that meet the requirements. The Realizable model suitable for mountain wind field and the SIMPLE algorithm with good stability were selected to numerically simulate the wind field characteristics of canyon by FLUENT software. Finally, according to the characteristic of canyon topography and influencing parameter velocity amplification coefficient mathematical formulas of canyon wind were put forward, and its validity was proved by multiple calculating examples. The results show that the contour line of canyon wind profiles can be divided into three segmentations, and it cannot be simulated by the power function model that is frequently used in plain area. Moreover, the contour of canyon wind profile has obvious inflection point, and the contours of wind profile in wind increasing section should be simulated by linear function and power function. The maximum wind velocity of wind profile in middle of the canyon is greater than the maximum wind speed at both sides of the canyon, and the corresponding wind speed inflection point’s height is also higher. The wind speed at the same height observation point in the canyon is parabola in the cross section of canyon, and the wind speed reaches the maximum value at the distance of about 60 m between the two sides of the mountain. The smaller the canyon width, the higher the peak in both sides, and the more obvious the “valley effect” of wind fields in valley. The wind speed inflection point height of wind profile is inversely proportional to the canyon depth-width ratio, and the greater the depth-width ratio of the canyon, the smaller the inflection height. The formulas in this paper can be used to calculate the wind speed of any height point in mountain canyon, and it provides a simple method for calculating the wind-resistant design wind speed of bridge in mountain canyon.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):44.

更新日期/Last Update: 2017-10-16