[1]牛玺荣,孙延芳.铁尾矿砂路基沉降及稳定性数值分析[J].长安大学学报(自然科学版),2018,38(01):9-16.
 NIU Xi-rong,SUN Yan-fang.Numerical analysis on settlement and stability of iron ore tailings subgrade[J].Journal of Chang’an University (Natural Science Edition),2018,38(01):9-16.
点击复制

铁尾矿砂路基沉降及稳定性数值分析()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第38卷
期数:
2018年01期
页码:
9-16
栏目:
道路工程
出版日期:
2018-01-31

文章信息/Info

Title:
Numerical analysis on settlement and stability of iron ore tailings subgrade
文章编号:
1671-8879(2018)01-0009-08
作者:
牛玺荣孙延芳
1. 山西大学 土木工程系,山西 太原 030013;2. 山西省交通科学研究院 黄土地区公路建设与养护技术交通行业重点实验室,山西 太原 030006;3. 太原理工大学 建筑与土木工程学院,山西 太原 030024
Author(s):
NIU Xi-rong SUN Yan-fang
1. Department of Civil Engineering, Shanxi University, Taiyuan 030013, Shanxi, China; 2. Key Laboratory of Highway Construction & Maintenance Technology in Loess Regions of Ministry of Transport, Shanxi Transportation Research Institute, Taiyuan 030006, Shanxi, China; 3. College of Architecture and Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
关键词:
道路工程铁尾矿砂数值计算沉降稳定性
Keywords:
road engineering iron ore tailing numerical analysis settlement stability
分类号:
U418.5
文献标志码:
A
摘要:
为评价包边土和土工格栅处置铁尾矿砂路基的效果,充分认识铁尾矿砂填筑路基的适用性,并提高其利用率,对4种工况的铁尾矿砂路基(6 m填高)的沉降和稳定性进行有限元数值计算。4种工况分别为:无包边土,无土工格栅(工况Ⅰ);有包边土,无土工格栅(工况Ⅱ);有包边土,包边土与铁尾矿砂交接处铺设三向土工格栅(工况Ⅲ);有包边土,满面铺设三向土工格栅(工况Ⅳ)。研究结果表明:工况Ⅰ、Ⅱ、Ⅲ、Ⅳ的最大工后(600 d)沉降分别为19.547、19.711、19.540、18.298 cm;固结阶段路面顶面中央处的沉降以工况Ⅳ最小,工况Ⅱ最大;最大水平位移发生在坡脚下7~8 m处,其次发生在土路肩边缘处,坡脚下水平位移向路基外侧发展,而土路肩处水平位移向路基内侧发展;工况Ⅳ潜在滑移面贯穿至基底5 m深度处,工况Ⅰ潜在滑移面位于路基边坡上,其抵抗滑移的能力最差;同时满面铺设土工格栅和设置包边土对提高路基稳定性的效果最为明显,安全系数可提高0.9;铺设土工格栅可有效减小铁尾矿砂路基顶面边缘的侧向位移,对有效预防路基路面纵向开裂具有积极作用,但其不能有效减小基底侧向位移;黏土包边提高了铁尾矿砂路基的稳定性,但加大了路基的不均匀沉降;设置包边土和铺设土工格栅的处置措施对提高填方边坡稳定性效果比减小沉降效果明显。
Abstract:
In order to evaluate the effect of wrapping soil and geogrid on the treatment of iron ore tailings subgrade, fully understand the applicability of iron ore tailings filling subgrade and improve their utilization, settlement and stability of four kinds of cases of iron ore tailings subgrade (6 m embankment height) were analyzed by finite element numerical method, which were as followed: no wrapping soil and no geogrid (case Ⅰ); wrapping soil and no geogrid (case Ⅱ); wrapping soil and three-way geogrid laid on the junction of wrapping soil and iron ore tailings (case Ⅲ); wrapping soil and three-way geogrid laid on all the wrapping soil and iron ore tailings (case Ⅳ). The results show that the maximum settlement after construction (600 d) of case Ⅰ, Ⅱ, Ⅲ and Ⅳ are 19.547, 19.711, 19.540 and 18.298 cm, respectively. The settlement of central place at the top of pavement are maximum in case Ⅰ and minimum in case Ⅱ in the consolidation stage. The maximum horizontal displacement occurs at the foot of slope with 7 to 8 m, which is followed by the edge of the soil shoulder. Horizontal displacement at the foot of slope occurs towards to the outside of subgrade and that of soil shoulder towards to the inside of subgrade. Potential slip surface of case Ⅳ develops into the depth of 5 m of basement. The potential slip surface of case Ⅰ is located on the slope of subgrade, and its ability of anti-slippage is the worst, and case Ⅳ can evidently improve the subgrade stability which safety factor can be increased by 0.9. Laying geogrid can effectively reduce the lateral displacement of surface edge on the top of subgrade of iron ore tailings, which has a positive effect on the effective prevention of subgrade and pavement longitudinal cracking, but which can not effectively reduce the lateral displacement of the basement. Clay wrapping relatively improves the stability of iron ore tailings subgrade but increases the differential settlement of subgrade. Moreover, soil-wrapping and geogrid-laying measures are more effective to improve the subgrade stability than to reduce the subgrade settlement.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):1.

备注/Memo

备注/Memo:
收稿日期:2017-08-29 基金项目:山西省自然科学基金项目(201701D121068);山西省交通科研计划项目(16-1-7);山西省交通建设科技项目(11-2-16);黄土地区公路建设与养护技术交通行业重点实验室开放基金项目(KLTLR-Y12-9,KLTLR-Y14-17)作者简介:牛玺荣(1976-),男,山西高平人,山西大学副教授,山西省交通科学研究院高级工程师,工学博士,博士后,E-mail: niuxirong@sxu.edu.cn。
更新日期/Last Update: 2018-02-05