[1]刘 凯,任晶鸽,王 芳,等.水泥铁砂导热砂浆性能与多因素关联分析与评价[J].长安大学学报(自然科学版),2017,37(02):9-17.
 LIU Kai,REN Jing-ge,WANG Fang,et al.Multi-factor correlation analysis and evaluation of properties of thermal cement mortars mixed with iron sand[J].Journal of Chang’an University (Natural Science Edition),2017,37(02):9-17.
点击复制

水泥铁砂导热砂浆性能与多因素关联分析与评价()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第37卷
期数:
2017年02期
页码:
9-17
栏目:
道路工程
出版日期:
2017-03-31

文章信息/Info

Title:
Multi-factor correlation analysis and evaluation of properties of thermal cement mortars mixed with iron sand
作者:
刘 凯任晶鸽王 芳王 志陆学元金 灿
1. 合肥工业大学 交通运输工程学院,安徽 合肥 230009;2. 安徽建筑大学 土木工程学院,安徽 合肥 230601;3. 安徽省交通控股集团有限公司,安徽 合肥 230088
Author(s):
LIU Kai REN Jing-ge WANG Fang WANG Zhi LU Xue-yuan JIN Can
1. School of Transportation Engineering, Hefei University of Technology, Hefei 230009, Anhui, China; 2. School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, Anhui, China; 3. Anhui Transportation Holding Group Co., Ltd., Hefei 230088, Anhui, China
关键词:
道路工程水泥铁砂导热砂浆导热性能强度性能灰关联分析
Keywords:
road engineering thermal cement mortar mixed with iron sand thermal conductivity mechanical property gray correlation analysis
分类号:
U414
文献标志码:
A
摘要:
为研究级配因素对水泥铁砂导热砂浆性能的影响,以及针对不同应用领域选择合理的级配组成问题,通过导热系数试验、抗折强度和抗压强度试验,分别分析了水灰比、总砂灰比、铁砂比对材料导热系数、抗折强度和抗压强度的影响;应用灰关联理论分析得到了导热性能、抗折强度、抗压强度与水灰比、总砂灰比、铁砂比之间的关联度;基于灰靶理论评价了15种级配组成的综合性能,并以导热系数、抗折强度、抗压强度和材料价格4个评价指标权重给出不同级配组成的综合性能评估方法,以及应用于融冰雪路面、桥面领域和化工导热领域时综合性能最好的级配组成。研究结果表明:随着水灰比的增大,水泥铁砂导热砂浆的导热性能、抗折强度和抗压强度均减小;随着总砂灰比的增大,导热系数增大,抗折强度与抗压强度在总砂灰比为2.5时最佳;随着铁砂比的增大,铁砂含量增加,导热系数和抗折强度增大,抗压强度在铁砂比为0.6时最佳;铁砂比对导热系数的影响最大,水灰比对抗折强度的影响最大,水灰比和铁砂比对抗压强度的影响均较大,总砂灰比对3项性能的影响均较小。研究结果为实际运用中选择合适的水泥铁砂导热砂浆提供了理论指导。
Abstract:
In order to study the influence of grading factors on properties of thermal cement mortars mixed with iron sand, and choose proper gradation composition according to different application fields, this paper respectively analyzed the effects of water-cement ratio, total sand-cement ratio and iron sand-total sand ratio on thermal conductivity, flexural strength and compressive strength of thermal cement mortars mixed with iron sand through thermal conductivity test, flexural strength test and compressive strength test. Correlations between the three factors and thermal conductivity, flexural strength and compressive strength were calculated with gray correlation theory. Comprehensive performance of fifteen kinds of gradation composition were evaluated based on gray target theory, and comprehensive performance evaluation methods of different gradation compositions were reproposed based on four evaluation index weights, such as thermal conductivity, flexural strength, compressive strength and material price, as well as gradation composition of the best comprehensive performance was suggested when thermal cement mortars mixed with iron sand used in melting snow and ice road, deck and chemical industrial field of thermal conductivity. The results show that thermal conductivity, flexural strength and compressive strength of thermal cement mortars mixed with iron sand all decrease with the increase of water-cement ratio. Thermal conductivity increases with the increase of total sand-cement ratio, and flexural strength and compressive strength of thermal cement mortars mixed with iron sand reach to the best when total sand-cement ratio is 2.5. Content of iron sand, thermal conductivity and flexural strength all increase with the increase of iron sand-total sand ratio, and compressive strength achieves the best when iron sand-total sand ratio is 0.6. Thermal conductivity is significantly influenced by iron sand-total sand ratio, flexural strength is significantly influenced by water-cement ratio, compressive strength is significantly influenced by both water-cement ratio and iron sand-total sand ratio. While total sand-cement ratio has little influence on performance of thermal cement mortars mixed with iron sand. The research results provide a theoretical guidance to choose appropriate proportion for practical application.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(02):1.

更新日期/Last Update: 2017-04-07