[1]蒋应军,李湾湾,方 剑,等.振动压实二灰碎石力学特性及影响因素[J].长安大学学报(自然科学版),2017,37(01):1-9.
 JIANG Ying-jun,LI Wan-wan,FANG Jian,et al.Mechanical properties and influencing factors of lime-fly-ash crushed rock base on vertical vibration test method[J].Journal of Chang’an University (Natural Science Edition),2017,37(01):1-9.
点击复制

振动压实二灰碎石力学特性及影响因素()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第37卷
期数:
2017年01期
页码:
1-9
栏目:
道路工程
出版日期:
2017-01-31

文章信息/Info

Title:
Mechanical properties and influencing factors of lime-fly-ash crushed rock base on vertical vibration test method
作者:
蒋应军李湾湾方 剑刘根昌
1. 长安大学 特殊地区公路工程教育部重点实验室,陕西 西安 710064;2. 金华市交通工程质监站,浙江 金华 321000;3. 许昌市建设投资有限公司,河南 许昌 461000
Author(s):
JIANG Ying-jun LI Wan-wan FANG Jian LIU Gen-chang
1. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, Shaanxi, China; 2. Quality Supervision Station of Jinhua Communications Department, Jinhua 321000, Zhejiang, China; 3. Xuchang Construction Investment Company Limited, Xuchang 461000, Henan, China
关键词:
道路工程力学特性垂直振动试验方法二灰碎石影响因素
Keywords:
road engineering mechanical property vertical vibration test method lime-fly-ash crushed rock influencing factor
分类号:
U414
文献标志码:
A
摘要:
为了揭示二灰碎石强度形成机理及影响因素,对比研究了垂直振动试验方法(vertical vibration test method,VVTM)及静压法成型试件的力学强度与实体工程芯样的力学强度,论证了二灰碎石垂直振动试验方法的可靠性,并采用VVTM研究试件的成型方式、龄期、二灰砂浆掺量、级配类型对二灰碎石力学特性的影响规律。研究结果表明:二灰碎石VVTM成型试件的无侧限抗压强度、劈裂强度平均为实体工程芯样的91.3%、90.2%,而静压法成型试件的无侧限抗压强度、劈裂强度平均为实体工程芯样的46.5%、51.9%,表明VVTM成型试件更能准确反映二灰碎石的工程特性;二灰碎石7、90、120、180 d的力学强度(抗压强度、劈裂强度)分别约为其极限强度的13%、60%、70%、80%,回弹模量分别约为其极限回弹模量的10%、50%、60%、70%;随着二灰砂浆掺量的增加,二灰碎石抗压强度和回弹模量先增大后减小,而劈裂强度先急剧增大后趋于平缓,甚〖JP2〗至有所降低;二灰砂浆掺量为32%时,二灰碎石抗压强度和抗压回弹模量达到最大,且继续增加二灰砂浆掺量二灰碎石劈裂强度没有明显增加,甚至有所降低,建议二灰砂浆掺量为32%;与《公路路面基层施工技术规范》(JTJ 034—2000)规定的级配二灰碎石相比,骨架密实级配二灰碎石早期力学强度和回弹模量可提高约1.15倍,120 d后力学强度可提高约20%。
Abstract:
In order to reveal the formation mechanism and influencing factors of strength of lime-fly-ash crushed rock, this paper compared the mechanical strength of specimens obtained with vertical vibration test method (VVTM) and static pressure method with that of practical engineering core samples, and proved the reliability of vertical vibration test method (VVTM). VVTM was then used to research the influence law of molding method, age, content of lime-fly ash mortar and gradation types on mechanical properties of lime-fly-ash crushed rock. The results show that the unconfined compressive strength and the splitting strength of lime-fly-ash crushed rock specimen molded with VVTM is 91.3% and 90.2% of site core samples on average, respectively. The unconfined compressive strength and the splitting strength of lime-fly-ash crushed rock specimen molded with static pressure method is 46.5% and 51.9% of site core samples on average, respectively. So specimen molded with VVTM can reflect more accurately the engineering characteristics of lime-fly-ash crushed rock. The mechanical strengths (compressive strength, splitting strength) of lime-fly-ash crushed rock of 7, 90, 120, and 180 d are about 13%, 60%, 70%, 80% of its ultimate strength, respectively, and their moduli of resilience are about 10%,50%, 60%, 70% of its ultimate resilient modulus, respectively. With the increase of lime-fly-ash mortar content, the compressive strength and modulus of lime-fly-ash crushed rock increases first and then decreases, and the splitting strength increases rapidly first and then levels off or even decreases. When lime-fly-ash mortar content is 32%, the compressive strength and compressive resilient modulus of lime-fly-ash crushed rock achieves the maximum. If it continues to increase lime-fly-ash mortar content, splitting strength of lime-fly-ash crushed rock does not increase and even decreases. The suggested lime-fly-ash mortar content should be 32%. Compared with the “Technical Guidelines for Construction of Highway Roadbases” (JTJ 034—2000), early mechanical strength and resilient modulus of dense skeleton gradation lime-fly-ash crushed rock can be improved about 1.15 times, and mechanical strength can be improved by about 20% after 120 d.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):1.

更新日期/Last Update: 2017-01-21