[1]季 节,刘禄厚,索 智,等.水性环氧树脂改性乳化沥青微表处性能[J].长安大学学报(自然科学版),2017,37(05):23-30.
 JI Jie,LIU Lu-hou,SUO Zhi,et al.Performances of micro-surfacing with waterborne epoxy resin modified emulsified asphalt[J].Journal of Chang’an University (Natural Science Edition),2017,37(05):23-30.
点击复制

水性环氧树脂改性乳化沥青微表处性能()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第37卷
期数:
2017年05期
页码:
23-30
栏目:
道路工程
出版日期:
2017-09-30

文章信息/Info

Title:
Performances of micro-surfacing with waterborne epoxy resin modified emulsified asphalt
作者:
季 节刘禄厚索 智许 鹰杨 松徐世法
1. 北京建筑大学 土木与交通工程学院,北京 100044;2. 北京建筑大学 北京未来城市设计高精尖创新中心,北京 100044;3. 中咨公路养护检测技术有限公司,北京 100089
Author(s):
JI Jie LIU Lu-hou SUO Zhi XU Ying YANG Song XU Shi-fa
1. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2. Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 3. CHECC Highway Maintenance and Test Technology Co., Ltd., Beijing 100089, China
关键词:
道路工程水性环氧树脂改性乳化沥青微表处性能
Keywords:
road engineering waterborne epoxy resin modified emulsified asphalt micro-surfacing performance
分类号:
U416.217
文献标志码:
A
摘要:
为评价水性环氧树脂改性乳化沥青微表处的性能,采用先乳化后改性的方法制备水性环氧树脂改性乳化沥青,利用三因素三水平正交试验确定最佳油水比、乳化剂掺量和水性环氧树脂掺量,并以其作为微表处胶结料。通过1 h湿轮磨耗试验(WTAT)和负荷轮黏附砂试验(LWT)测定5组不同油石比微表处的磨耗值和黏附砂量,根据磨耗值或黏附砂量与油石比曲线交点确定微表处最佳油石比。采用6 d WTAT、摆值试验和渗水试验分别评价微表处的抗水损坏、抗滑性能和防水性能,通过轮辙变形试验判定水性环氧树脂改性乳化沥青微表处可用于车辙填补,并利用车辙填补试验和罩面车辙试验评价微表处的抗车辙性能。研究结果表明:水性环氧树脂改性乳化沥青最佳油水比为65:35,乳化剂掺量(质量分数,下同)为1.4%,水性环氧树脂掺量为4%,微表处最佳油石比在6.7%附近;微表处抗水损坏性能满足磨耗值不大于800 g/m2的技术要求,抗滑性能满足摆值不小于70 BPN的技术要求,且其高出技术要求,能为行车提供较好的摩擦力;经碾压养生后的微表处渗水系数为0,防水效果好;同时,微表处的宽度变形率和车辙深度率较小,可用于路面早期压密性车辙填补(不宜用于结构性车辙填补),经过微表处罩面后能显著提高路面的高温抗变形能力,有效恢复路面平整度。
Abstract:
In order to evaluate the performances of micro-surfacing with waterborne epoxy resin modified emulsified asphalt, waterborne epoxy resin modified emulsified asphalt was prepared by the method of emulsification first and then modification. The optimum oil-water ratio, emulsifier content and waterborne epoxy resin content were determined through orthogonal test with three factors and three levels. The 1 h WTAT (wet track abrasion test) and LWT (load wheel test) were conducted on micro-surfacing to measure abrasion values and adhesion sand contents of five groups of different asphalt-aggregate ratios, and the optimum asphalt-aggregate ratio of micro-surfacing was determined by the intersection point which was from curves of abrasion values or adhesion sand contents and the asphalt-aggregate ratios. The 6 h WTAT, the pendulum value test and the seepage test were conducted on micro-surfacing to evaluate the resistance to water damage, skid resistance performance and waterproofness, respectively. Micro-surfacing of water-borne epoxy resin modified emulsified asphalt could be used to fill rutting by the test of wheel rutting deformation, and the rutting resistance of the micro-surfacing was evaluated by the rutting resistance test and overlay rutting test. The results show that the optimum oil-water ratio, emulsifier content and waterborne epoxy resin content of waterborne epoxy resin modified emulsified asphalt are 65:35, 1.4% and 4% (mass fraction, the same below), respectively, and the optimum asphalt aggregate ratio of micro-surfacing is very close to 6.7%. Performance of resistance to water damage of micro-surfacing meets the technical requirements that the abrasion values are not more than 800 g/m2, and the skid resistance performance of micro-surfacing also meets the current technical requirements that the pendulum number is no less than 70 BPN. And it is higher than the technical requirements, which can provide better friction for the traffic. The seepage coefficient of micro-surfacing is zero after rolling, which indicates that waterproof effect is good. Furthermore, the width deformation ratio and rutting depth ratio of micro-surfacing is very small, which can be used for filling the early compaction rutting (can not be used for filling the structural rutting). Micro-surfacing after overlay can significantly improve the high temperature deformation resistance of road and efficiently restore roughness of road.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):1.
[11]郭寅川,丑涛,申爱琴,等.湿热地区水性环氧树脂对桥面板混凝土疲劳性能的改善[J].长安大学学报(自然科学版),2021,41(4):1.
 GUO Yin chuan,CHOU Tao,SHEN Ai qin,et al.Improvement of fatigue performance of bridge deck concrete bywaterborne epoxy resin in hot and humid regions[J].Journal of Chang’an University (Natural Science Edition),2021,41(05):1.
[12]郭寅川,张冲,申爱琴,等.湿热环境下水性环氧树脂改性桥梁混凝土耐久性及机理[J].长安大学学报(自然科学版),2022,42(2):32.
 GUO Yin chuan,ZHANG Chong,SHEN Ai qin,et al.Durability and mechanism of waterborne epoxy resin modified bridgeconcrete in humid and hot environment[J].Journal of Chang’an University (Natural Science Edition),2022,42(05):32.

更新日期/Last Update: 2017-10-16