[1]胡志远,磨文浩,秦 艳,等.在用国Ⅳ柴油公交车CCBC颗粒物排放特性[J].长安大学学报(自然科学版),2017,37(01):112-119.
 HU Zhi-yuan,MO Wen-hao,QIN Yan,et al.Characteristics of particulate matter emissions from an in-used China-Ⅳ diesel bus under CCBC[J].Journal of Chang’an University (Natural Science Edition),2017,37(01):112-119.
点击复制

在用国Ⅳ柴油公交车CCBC颗粒物排放特性()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第37卷
期数:
2017年01期
页码:
112-119
栏目:
汽车与机械工程
出版日期:
2017-01-31

文章信息/Info

Title:
Characteristics of particulate matter emissions from an in-used China-Ⅳ diesel bus under CCBC
作者:
胡志远磨文浩秦 艳谭丕强楼狄明
同济大学 汽车学院,上海 201804
Author(s):
HU Zhi-yuan MO Wen-hao QIN Yan TAN Pi-qiang LOU Di-ming
School of Automotive Studies, Tongji University, Shanghai 201804, China
关键词:
汽车工程在用国Ⅳ柴油公交车中国典型城市公交循环颗粒物排放特征
Keywords:
automobile engineering in-used China-Ⅳ diesel bus CCBC particulate matter characteristic
分类号:
U467.1; X513
文献标志码:
A
摘要:
以1辆在用国Ⅳ柴油公交车为研究对象,在重型底盘测功机上进行中国典型城市公交循环(CCBC循环)排放试验,分析了该车CCBC循环的发动机工况特点,研究了PM0.1、PM0.1~2.5、PM2.5~10等3个粒径段的颗粒物数量和质量排放特性。研究结果表明:该国Ⅳ柴油公交车CCBC循环的发动机转速集中在600~1 338 r/min,转矩集中在0~400 N·m,说明该国Ⅳ柴油公交车CCBC循环的发动机工况以低速低转矩为主;该国Ⅳ柴油公交车CCBC循环PM0.1、PM0.1~2.5、PM2.5~10颗粒物数量排放因子分别为(1.21±0.07)×1013、(2.82±0.3)×1012、(1.66±0.07)×109个/km,可吸入颗粒物PM10数量排放中81.2%为粒径小于等于0.1μm的超细颗粒物PM0.1,且CCBC循环所有工况的PM0.1数量排放占PM10数量排放的比例超过70%;CCBC循环PM0.1、PM0.1~2.5、PM2.5~10颗粒物质量排放因子分别为(0.71±0.05)、(20.24±1.51)、(105.50±4.49) mg/km,可吸入颗粒物PM10质量排放中83.4%为粒径大于2.5 μm的细颗粒物PM2.5~10,且CCBC循环所有工况的PM0.1~2.5与PM2.5~10质量之和占PM10质量排放的约90%;CCBC循环中,车辆从怠速开始起步加速过程排放的超细颗粒PM0.1数量、质量占可吸入颗粒物PM10的数量及质量排放比例随着车速的上升而增大,数量比例最高达94.8%,质量比例最高达13.0%;车辆由加速过渡到匀速并进一步过渡到减速行驶时几乎不产生PM2.5~10颗粒质量排放;车辆减速时排放的可吸入颗粒物PM10数量、质量排放急速下降,颗粒物质量主要以PM2.5~10为主;CCBC循环车辆怠速、加速、匀速、减速4种行驶工况中,加速行驶工况产生的PM0.1、PM0.1~2.5、PM2.5~10颗粒数量、质量排放比例超过4种工况的颗粒物数量、质量排放总量的60%。
Abstract:
13An experimental study was conducted in an in-used China-Ⅳ diesel bus on heavyduty chassis dynamometer under CCBC (Chinese typical city bus driving cycle short for CCBC), laboratory driving cycle, and then the quantity and quality characteristics of PM0.1(particulate matter, d≤100 nm, d represents diameter), PM0.1~2.5 (particulate matter, 100 nm<d≤2.5 μm), PM2.5~10(particulate matter, 2.5 μm<d≤10 μm) emissions under CCBC were studied. The results show that the bus working condition under CCBC driving cycle is mainly located in 600~1 338 r/min for engine speed range and 0~400 N·m for torque range, which shows low speed and low torque are the main characteristics of the country. Particulate matter quantity emission factors of PM0.1, PM0.1~2.5 and PM2.5~10 under CCBC are respectively (1.21±0.07)×1013, (2.82±0.3)×1012, and (1.66±0.07)×109 per kilometer. 81.2% inhalable particulate matter quantity emission factor of PM10 is contributed to ultrafine particulate whose d≤0.1 μm. Besides, the quantity emission of PM0.1 in all working conditions accounts for over 70% that of PM10. Particulate matter quality emission factors of PM0.1,PM0.1~2.5 and PM2.5~10 under CCBC are respectively (0.71±0.05), (20.24±1.51), and (105.50±4.49) mg/km. 83.4% inhalable particulate matter quality emission factor of PM10 is contributed to fine particulate whose d>2.5 μm. Quality emissions of PM0.1~2.5 and PM2.5~10take about 90% proportion of quality emission of PM10 under all CCBC working conditions. Ultrafine particulate PM0.1 quantity and quality emission proportion increase with the increasing of vehicle speed during both the transition from idle to start and acceleration working condition. The maximum quantity proportion could reach 94.8% while maximum quality proportion could reach 13.0%. Quality emission of PM2.5~10 is almost 0-level during the transition from acceleration to uniform speed then to deceleration. During deceleration working condition, quantity and quality emission of particulate matter decrease sharply and quality emission of inhalable particulate matter are mainly composed of PM2.5~10 emission. Among all idling, acceleration, uniform speed and deceleration working conditions under CCBC cycle, quantity and quality emission proportion of PM0.1,PM0.1~2.5 , PM2.5~10 during acceleration working condition are highest, which all exceeds 60% of quantity and quality emission in all working conditions.

相似文献/References:

[1]李耀华,马建,刘晶郁,等.永磁同步电机直接转矩控制电压矢量选择区域[J].长安大学学报(自然科学版),2012,32(01):0.
[2]赵 轩,贺伊琳,余 曼,等.基于MCGS的纯电动汽车智能仪表设计与实现[J].长安大学学报(自然科学版),2012,32(03):96.
 ZHAO Xuan,HE Yi-lin,YU Man,et al.Design and implementation method of intelligent instrument based on MCGS software for electric vehicle[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):96.
[3]李恒宾.基于ALE算法的汽车侧面气帘展开仿真[J].长安大学学报(自然科学版),2012,32(03):101.
 LI Heng-bin.Numerical simulation of automobile curtain airbag deployment based on ALE algorithm[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):101.
[4]袁 伟,付 锐,郭应时,等.基于马尔可夫链的驾驶人视觉转移特征[J].长安大学学报(自然科学版),2012,32(06):88.
 YUAN Wei,FU Rui,GUO Ying-shi,et al.Driver's visual transition characteristics based on the Markov chain[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):88.
[5]刘东辉,吴初娜.基于霍尔传感器的制动踏板行程测量系统设计[J].长安大学学报(自然科学版),2012,32(02):106.
 LIU Dong-hui,WU Chu-na.Design of brake pedal displacement measuring system based on Hall sensor[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):106.
[6]赵 伟,张春化,佟娟娟,等.EGR对甲醇HCCI发动机燃烧与排放的影响[J].长安大学学报(自然科学版),2012,32(04):88.
 ZHAO Wei,ZHANG Chun-hua,TONG Juan-juan,et al.Effect of EGR on combustion and emission of methanol HCCI engine[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):88.
[7]金 涛,马 静,王苑超,等.一种新型分布式汽车多检测线系统体系结构[J].长安大学学报(自然科学版),2012,32(04):93.
 JIN Tao,MA Jing,WANG Yuan-chao,et al.A new distributed multi-inspection controlling system architecture for vehicle[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):93.
[8]袁华智,朱 铭,李阳阳,等.柴油机生物柴油-甲醇混合燃料燃烧与排放特性[J].长安大学学报(自然科学版),2012,32(05):97.
 YUAN Hua-zhi,ZHU Ming,LI Yang-yang,et al.Combustion and emission characteristics of blended fuel of biodiesel and methanol for diesel engine[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):97.
[9]吴 晗,张春化,佟娟娟,等.EGR对甲醇HCCI发动机性能和运行范围的影响[J].长安大学学报(自然科学版),2012,32(05):102.
 WU Han,ZHANG Chun-hua,TONG Juan-juan,et al.Effect of EGR on performance and operation range of methanol HCCI engine[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):102.
[10]梁晓娟,李西秦,黎 苏,等.定容燃烧过程中苯与芳香烃排放规律[J].长安大学学报(自然科学版),2012,32(05):107.
 LIANG Xiao-juan,LI Xi-qin,LI Su,et al.Emissions of benzene & polycyclic aromatic hydrocarbons in constant volume combustion process[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):107.

更新日期/Last Update: 2017-01-22