[1]冯冠杰,陈 淮,王 艳,等.计算车桥耦合振动路面不平度影响的虚拟梁元法〖JP〗[J].长安大学学报(自然科学版),2019,39(05):59-67.
 FENG Guan jie,CHEN Huai,WANG Yan,et al.Virtual beam element method used to calculate the vehiclebridge coupled vibration with road roughness[J].Journal of Chang’an University (Natural Science Edition),2019,39(05):59-67.
点击复制

计算车桥耦合振动路面不平度影响的虚拟梁元法〖JP〗()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第39卷
期数:
2019年05期
页码:
59-67
栏目:
桥梁与隧道工程
出版日期:
2019-09-15

文章信息/Info

Title:
Virtual beam element method used to calculate the vehiclebridge coupled vibration with road roughness
作者:
冯冠杰陈 淮王 艳陈代海
(郑州大学 土木工程学院,河南 郑州 450001)
Author(s):
FENG Guanjie CHEN Huai WANG Yan CHEN Daihai
(School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China)
关键词:
桥梁工程虚拟梁元接触分析车桥耦合振动路面不平度
Keywords:
bridge engineering virtual beam element contact analysis vehiclebridge coupled vibration road roughness
文献标志码:
A
摘要:
为了准确、高效计算车桥耦合振动中路面不平度的影响,提出一种在车桥耦合竖向振动分析中处理路面不平度的虚拟梁元法,采用界面接触法建立车辆和路面不平顺轨迹刚性梁间的耦合传力,同时将不平顺轨迹刚性梁模拟成机动体系与桥梁结构建立连接,将虚拟梁元作为车轮的行驶轨迹,简化路面不平度输入时的编程难度。研究结果表明:所设置的虚拟梁元对桥梁结构竖向刚度和自振特性没有影响;虚拟梁元法计算结果受有限元模型网格划分尺寸影响很小,结果稳定性好;不同车辆模型分别以不同速度通过路面平顺状态下的简支梁算例桥梁时,分离迭代法计算的跨中位移最大动挠度与文献结果最大相对偏差1.14%,虚拟梁元法与文献结果最大相对偏差为2.06%;1/4车辆以40 km/h的车速通过算例桥梁时,A级路面不平顺下,2种方法获得的跨中位移动挠度相对偏差为1.58%,B级路面为2.99%,C级路面为3.62%;采用虚拟梁元法计算7自由度空间车辆以不同车速通过平面简支板桥的车桥耦合振动效应时,跨中位移最大动挠度与文献结果最大相对偏差为2.45%;比较分离迭代法和虚拟梁元法在求解同一问题时的CPU time花费,虚拟梁元法用时为分离迭代法的1/4,效率较高。虚拟梁元法可以准确计入路面不平度的影响,且在求解空间车辆和三维桥梁车桥耦合振动问题时具有较高的精度,比传统的分离迭代法具有较高的计算效率。
Abstract:
To accurately and efficiently calculate the effects of road roughness on the vehiclebridge coupling vibration problem, a method employing virtual unevenness beam elements in the contact analysis procedure was proposed to deal with the road roughness. The interface contact method was used to establish the coupling force transfer between the vehicle and the rigid beam of the uneven track. The rigid beam of the uneven track was simulated as a motorized system to establish the connection between the vehicle and the bridge structure, and the rigid beam of the uneven track was set as the driving track of the wheel,the programming difficulty of the input for road roughness was simplified. The results show that the setting of virtual unevenness beam elements has no effect on the structural stiffness and structural natural dynamic characteristics. The results of the virtual beam element method were barely affected by the element size of the finite model of a simply supported beam, and the results are stable. When the example bridge with a smooth surface is crossed by different kinds of vehicles at different speeds, the difference between the separate iteration method results and the reference result is 1.14%, for the midspan maximum dynamic displacement, the difference between the virtual unevenness beam elements method results and the reference result is 2.06%. When the example bridge with road roughness class A is crossed by a 1/4 model vehicle at 40 km/h. The midspan maximum dynamic deflection the difference between the two methods is 1.58%,while with road roughness class B, the difference is 2.99%, and with road roughness class C, the difference is 3.62%. Using the virtual unevenness beam elements method, when the plane slab bridge is crossed by seven degrees of freedom vehicles at different speeds, the maximum difference compared with the reference result is 2.45%. Comparing the CPU time cost between the two methods, the time cost of the separation iterative method is four times that for the virtual unevenness beam element method, which has higher efficiency. The virtual beam element method can accurately take into account the influence of road surface roughness, and has higher accuracy in solving the coupling vibration problems of space vehicles and threedimensional bridges, and exhibit higher calculation efficiency, compared with the traditional separation iteration method. 5 tabs, 10 figs, 25 refs.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):44.

更新日期/Last Update: 2019-10-16