[1]钟新谷,张天予,彭雄,等.基于螺纹联接的预应力精轧螺纹钢筋张拉力识别原理与技术[J].长安大学学报(自然科学版),2019,39(04):82-91.
 ZHONG Xin gu,ZHANG Tian yu,PENG Xiong,et al.Tension identification principle and technology for prestressing finerolling screwthread steel bars based on a threaded connection model[J].Journal of Chang’an University (Natural Science Edition),2019,39(04):82-91.
点击复制

基于螺纹联接的预应力精轧螺纹钢筋张拉力识别原理与技术()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第39卷
期数:
2019年04期
页码:
82-91
栏目:
道路工程
出版日期:
2019-07-15

文章信息/Info

Title:
Tension identification principle and technology for prestressing finerolling screwthread steel bars based on a threaded connection model
作者:
钟新谷张天予彭雄舒小娟沈明燕
(湖南科技大学 结构抗风与振动控制湖南省重点实验室,湖南 湘潭 411201)
Author(s):
ZHONG Xingu ZHANG Tianyu PENG Xiong SHU Xiaojuan SHEN Mingyan
(Key Laboratory of Windresistant and Vibration Control for Structure of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China)
关键词:
桥梁工程张拉力识别固有频率识别精轧螺纹钢筋弹簧联接接触刚度
Keywords:
bridge engineering tension identification natural frequency identification finerolling screwthread steel bar spring connection contact stiffness
文献标志码:
A
摘要:
为了防止预应力混凝土箱梁桥腹板开裂,以混凝土箱梁桥预应力精轧螺纹钢筋张拉力测试,并修订相关规程。视预应力精轧螺纹钢筋锚固螺母与锚垫板为弹簧联接,联接弹簧的刚度为其接触面法向接触刚度。放弃精轧螺纹钢筋与锚固螺母固结假定,视其钢筋、螺母螺纹为弹簧联接,视螺纹为悬臂结构,并基于图乘法计算联接弹簧刚度,建立预应力精轧螺纹钢筋锚固系统弯曲振动动力学模型。考虑到精轧螺纹钢筋联接传力过程中,每圈螺纹传力大小的不均匀性,越远离接触面传力越小,导致精轧螺纹钢筋的外露长度发生相对变化,影响测试结果的正确性,提出其法向接触刚度的修正方程。最后,开展了室内模型试验和多座桥梁的现场试验。研究结果表明:该方法解决了预应力精轧螺纹钢筋锚固系统因外露长度不同引起的张拉力测试误差,获得了锚固螺母与锚垫板法向接触刚度与张拉力关系式,该关系式符合接触面法向刚度与法向力关系的一般规律;模型试验和现场试验均表明其法向接触刚度与张拉力关系具有稳定性,其原理可应用于现场桥梁测试和相关规范修订。规范的实施对彻底解决竖向预应力损失过大和失效的问题具有重要意义,该研究结果对于土木工程类似结构的张拉力、机械结构类似的紧固力测试与分析具有参考意义。
Abstract:
To prevent web cracking of a pretensioned concrete box girder bridge, this study aimed to provide a more efficient accurate test technique for effective tensile force of prestressing finerolling screwthread steel bars and revised the relevant regulations. It was considered that the anchorage nut and the anchor plate of prestressing finerolling screwthread steel bars were connected by springs and the stiffness of the coupling spring was the normal contact stiffness of the contact surface. Dismissing the fixation assumption of the steel bars and anchorage nut, the connection between the steel bar and nut threads were considered as a cantilever structure and the stiffness of springs was calculated using the graphic multiplication method. The dynamic model of the bending vibration of the prestressing finerolling screwthread steel bars was established. During the process of joint force transmission of finerolling screwthread steel bars, the force transmission in each lap of thread was nonuniform, and the farther away from the contact surface, the smaller the force transmission. This may change the length of the exposed segment of the steel bars and affect the accuracy of the test results. Based on the thread characteristics, a modified equation of the normal contact stiffness of the contact surface was proposed. Finally, model tests and field tests of multiple bridges were conducted. The results show that the problem of the tension test error caused by the different exposed segment lengths of the anchor system of the prestressing finerolling screwthread steel bars is solved using this method. The relationship between the normal contact stiffness and tension of the anchorage nut and anchor plate is obtained and which conforms to the general rule of the relationship between the normal contact stiffness and force. The results of the model and field tests show that the relationship between the normal contact stiffness and tension is stable and effective and can be used to conduct field tests and revise the current test specifications. The implementation of this code is of great significance to thoroughly solve the problem of excessive loss and failure of vertical prestress. It can be extended to other structures with a similar anchorage system. 6 tabs, 11 figs, 21 refs.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(04):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(04):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(04):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(04):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(04):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(04):44.

更新日期/Last Update: 2019-07-29