[1]赵明华,许佳准,张锐,等.不排水条件下的临坡条形基础承载力有限元极限分析[J].长安大学学报(自然科学版),2019,39(03):45-52.
 ZHAO Ming hua,XU Jia zhun,ZHANG Rui,et al.Bearing capacity of strip footings on undrained slopes using finite element limit analysis[J].Journal of Chang’an University (Natural Science Edition),2019,39(03):45-52.
点击复制

不排水条件下的临坡条形基础承载力有限元极限分析()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第39卷
期数:
2019年03期
页码:
45-52
栏目:
道路工程
出版日期:
2019-05-15

文章信息/Info

Title:
Bearing capacity of strip footings on undrained slopes using finite element limit analysis
作者:
赵明华许佳准张锐肖尧
(1. 湖南大学 岩土工程研究所,湖南 长沙 410082; 2. 中南大学 土木工程学院,湖南 长沙 410075)
Author(s):
ZHAO Minghua1 XU Jiazhun1 ZHANG Rui2 XIAO Yao1
(1. Institute of Geotechnical Engineering, Hunan University, Changsha 410082, Hunan, China; 2. School of Civil Engineering, Central South University, Changsha 410075, Hunan, China)
关键词:
道路工程有限元极限分析不排水边坡条形基础极限承载力
Keywords:
road engineering finite element limit analysis undrained slope strip footing ultimate bearing capacity
文献标志码:
A
摘要:
为计算作用在不排水边坡上条形基础的极限承载力,首先,根据临坡条形基础承载特性,将基础假定为刚体且基底与土体之间没有摩擦力,同时将基础的埋置深度用其两侧的超载代替,并将其视为平面应变问题,建立计算模型。然后,通过有限单元对应力场和速度场进行离散,根据上、下限定理建立节点应力和节点速度的约束方程,将外力荷载或总的内能耗散作为目标函数,建立相应的数学规划模型,并采用优化算法求解该模型,得到严格的上、下限解,在优化计算过程中对MohrCoulomb准则进行了双曲线近似处理。最后,在此基础上分析了坡高H、基础与坡顶的距离L、超载q、[WTBX]坡角β以及黏聚力Cu对极限承载力系数p/γB的影响(γ为重度,B为坡顶基础宽度,p为基础承载力)。同时将计算结果与已有成果进行对比分析,验证了该方法的正确性,总结了3种极限破坏模式,并提供了常见不排水边坡的设计计算表格,以供实际工程设计参考。研究结果表明:p/γB随H的增大先急剧减小,然后基本稳定,趋近于一固定值,临界坡高为2倍基础宽度;p/γB随基础与坡顶的距离增大而增大,且趋向于一常数;p/γB随超载的增大而线性增大,且L/B越大,增长速率越快;p/γB与坡角基本成线性关系,其值随着坡角β的增大而减小;p/γB随着黏聚力系数(Cu/γB)的增大而线性增大。
Abstract:
In order to calculate the bearing capacity of strip footings on undrained slopes, first, according to the bearing characteristics of strip footing on slopes, the footing was assumed to be a smooth rigid body and there was no friction between the base and the soil, the footing buried depth was replaced by overloads on both sides, the problem was considered to be a plane strain problem, and a calculation model was established. Second, the stress field and velocity field was discreted by finite element, and the constraint equations of nodal stress and nodal velocity was established, according to the upper and lower bound theorems. The total internal energy dissipation or external force load was used as the objective function, a mathematical programing model was established and an appropriate algorithm was used to solve the function,and the strict upper and lower solutions were obtained. The hyperbolic approximation of the MohrCoulomb criterion was processed during the optimization calculation. At the same time, the results of this paper were compared with the existing results, the correctness of the method was verified. Three types of failure mechanics were summarized, and the design tables for undrained slopes were presented to provide reference for engineering practice. Finally, based on the numerical results, the effects of slope height H, the distance between the foundation and the top of the slope L, overload q, slope angle β, and cohesion Cu on the bearing capacity factor p/γB were evaluated. Where γ was unit of weight, B was the width of slope top foundation, p was bearing capacity of foundation. The results show that p/γB increases with an increase in H sharply and eventally apparoches a constant, the critical slope height is two times that of the footing width. p/γB increases with an increase in L/B and eventally apparoches a constant. p/γB increases linearly with overload q and the larger the L/B, the faster is the growth rate. The relationship between p/γB and slope angle β is linear, and it decreases with an increase in the slope angle β. p/γB is linear with the cohesion Cu/γB, and it increases with the increase in cohesion Cu/γB. 1 tab, 13 figs, 23 refs.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[9]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(03):1.
[10]周 浩,沙爱民,胡力群.半刚性基层材料疲劳试验[J].长安大学学报(自然科学版),2012,32(03):6.
 ZHOU Hao,SHA Ai-min,HU Li-qun.Test on fatigue property of semi-rigid base material[J].Journal of Chang’an University (Natural Science Edition),2012,32(03):6.
[11]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[12]曾胜,何宇航.旧水泥混凝土路面沥青加铺层结构力学分析[J].长安大学学报(自然科学版),2008,28(02):18.
 ZENG Sheng,HE Yu-hang.Structure stress of asphalt overlay on old cement concrete pavement[J].Journal of Chang’an University (Natural Science Edition),2008,28(03):18.
[13]王晓谋,尉学勇,魏进,等.硬壳层软土地基竖向附加应力扩散的数值分析[J].长安大学学报(自然科学版),2007,27(03):37.
 WANG Xiao-mou,YU Xue-yong,WEI Jin,et al.Numerical analysis of vertical additional stress spreading on soft clay foundation with dry crust[J].Journal of Chang’an University (Natural Science Edition),2007,27(03):37.
[14]陈立伟,彭建兵,范文,等.地震作用下黄土暗穴的稳定性[J].长安大学学报(自然科学版),2007,27(06):34.
 CHEN Li-wei,PENG Jian-bing,FAN Wen,et al.Stability of loess-hidden hole under earthquake[J].Journal of Chang’an University (Natural Science Edition),2007,27(03):34.
[15]王朝辉,王选仓,李晶晶.沥青加铺层结构中格栅夹层合理位置的确定沥青加铺层结构中格栅夹层合理位置的确定[J].长安大学学报(自然科学版),2009,29(05):1.
 WANG Chao hui,WANG Xuan cang,LI Jing jing.Determination of grid interlayer rational position in asphalt overlay structure[J].Journal of Chang’an University (Natural Science Edition),2009,29(03):1.
[16]郑碧玉,朱东方,尹冠生.移动荷载作用下土的力学分析移动荷载作用下土的力学分析[J].长安大学学报(自然科学版),2009,29(05):35.
 ZHENG Bi yu,ZHU Dong fang,YIN Guan sheng.Mechanic analysis of soil under moving load[J].Journal of Chang’an University (Natural Science Edition),2009,29(03):35.
[17]虞将苗,李晓军,王端宜,等.基于计算机层析识别的沥青混合料有限元模型[J].长安大学学报(自然科学版),2006,26(01):16.
 YU Jiang-miao,LI Xiao-jun,WANG Duan-yi,et al.Finite Elment Modeling of Asphalt Mix with X-ray Computerized Tomograph Processing[J].Journal of Chang’an University (Natural Science Edition),2006,26(03):16.
[18]关宏信,张起森,郑健龙,等.旧水泥混凝土路面搭板罩面的应力[J].长安大学学报(自然科学版),2005,25(06):25.
 GUAN Hong-xin,ZHANG Qi-sen,ZHENG Jian-long.Stress of asphalt overlay laying on cracked concrete pavement repaired with bridging slab[J].Journal of Chang’an University (Natural Science Edition),2005,25(03):25.
[19]董强柱,李彦伟,石 鑫,等. 道路表面动水压力的计算和分析[J].长安大学学报(自然科学版),2013,33(05):17.
[20]李彦伟,穆 柯,石 鑫,等.基面层间接触状态对沥青路面力学响应影响[J].长安大学学报(自然科学版),2014,34(02):38.
 [J].Journal of Chang’an University (Natural Science Edition),2014,34(03):38.

更新日期/Last Update: 2019-05-23