[1]曹雪娟,刘誉贵,曹芯芯,等.生物质重油与生物沥青制备及性能[J].长安大学学报(自然科学版),2019,39(03):27-35.
 CAO Xue juan,LIU Yu gui,CAO Xin xin,et al.Preparation and properties of biomass heavy oil and bio-asphalt[J].Journal of Chang’an University (Natural Science Edition),2019,39(03):27-35.
点击复制

生物质重油与生物沥青制备及性能()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第39卷
期数:
2019年03期
页码:
27-35
栏目:
道路工程
出版日期:
2019-05-15

文章信息/Info

Title:
Preparation and properties of biomass heavy oil and bio-asphalt
作者:
曹雪娟刘誉贵曹芯芯刘攀苗成成冯云霞
(1.重庆交通大学 材料科学与工程学院,重庆 400074; 2. 重庆交通大学 交通土建工程材料国家地方联合工程实验室,重庆 400074; 3. 重庆市智翔铺道技术工程有限公司,重庆 400076; 4. 重庆交通大学 土木工程学院,重庆 400074
Author(s):
CAO Xuejuan12 LIU Yugui13 CAO Xinxin4 LIU Pan3 MIAO Chengcheng1 FENG Yunxia1
(1. School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing 400074, China; 3. Chongqing Zhixiang Paving Technology Engineering Co., Ltd., Chongqing 400076, China; 4. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
关键词:
道路工程生物沥青性能试验生物质重油
Keywords:
road engineering bioasphalt performance test biomass heavy oil
文献标志码:
A
摘要:
为了制备生物沥青,缓解道路建设对石油沥青的依赖性,以木屑为生物质原材料,采用热液化方法制备生物质重油,将重油掺至50#基质沥青中制备生物沥青,部分替代石油沥青。首先,采用红外光谱、扫描电镜、热重分析仪微观表征方法,分析生物质重油的物化性质;然后通过三大指标(针入度、软化点、延度)考察重油掺量对生物沥青基本物理性能的影响;以水煮法评价了生物沥青的黏附性,利用差示量热扫描仪(DSC)、动态剪切流变仪(DSR)分析生物沥青的低温性能、高温性能及蠕变恢复性能。试验结果表明:重油与70#基质沥青存在相似的化学结构,且有较好的热稳定性,165 ℃时的热分解率仅为3.6%;重油中存在直径约3 μm的球形颗粒生物炭,有利于提高生物沥青的高温性能;随重油掺量的增加,生物沥青的针入度增加,软化点、延度及玻璃化转变温度Tg降低,低温性能提升,且能保持较好的黏附性能;当重油掺量(质量分数,下同)为10%时,生物沥青的性能与70#基质沥青最为接近;生物沥青的车辙因子与复数剪切模量介于50#与70#基质沥青之间,生物沥青较70#基质沥青有更好的高温抗永久变形能力与抗剪切性能;平均应变恢复率与平均不可恢复蠕变柔量的计算结果均表明生物沥青的蠕变恢复性能优于70#基质沥青。
Abstract:
In order to prepare bioasphalt and alleviate the dependence of road construction on petroleum asphalt. In this paper, sawdust was used as a biomass raw material to prepare biomass heavy oil by thermal liquefaction. Bioasphalt was prepared by mixing heavy oil into 50# matrix asphalt, which could be used to partial replace petroleum bitumen. First, the physical and chemical properties of biomass heavy oil were analyzed by infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. Then, the effects of heavy oil content on the basic physical properties of bioasphalt were investigated by three major indexes, needle penetration, softening point, and ductility. The adhesion of bioasphalt was evaluated by using the boiling method. Low temperature performance, high temperature performance, and creep recovery performance of bioasphalt were analyzed using a differential thermal scanner (DSC) and dynamic shear rheometer (DSR). The results show that heavy oil has a similar chemical structure with the 70# matrix asphalt, and it has good thermal stability. The thermal decomposition rate at 165 ℃ is only 3.6%, and the existence of spherical granular biochar with a diameter of about 3 μm in heavy oil is beneficial for improving the hightemperature performance of the bioasphalt. With an increase in the heavy oil content, the needle penetration of bioasphalt increases, and the softening point, ductility, and glass transition temperature Tg decrease. Further, the low temperature performance of the bioasphalt is improved, and a good adhesion performance can be maintained. When the amount of heavy oil (mass fraction, the same below) is 10% in the bioasphalt, the performance of the bioasphalt is closed to that of the 70# matrix bitumen. The rutting factor and complex shear modulus of bioasphalt are between 50# matrix asphalt and 70# matrix asphalt, the bioasphalt has better high temperature resistance to permanent deformation and shear resistance greater than that of the 70# matrix bitumen. In addition, the results of the average strain recovery rate R and average unrecoverable creep compliance show that the creep recovery performance of bioasphalt is better than that of the 70# matrix bitumen. 5 tabs, 10 figs, 31 refs.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(03):1.

更新日期/Last Update: 2019-05-23