[1]彭波,邓海龙,曹世江,等.热拌沥青混合料碳排放量化与评价体系[J].长安大学学报(自然科学版),2019,39(03):1-9.
 PENG Bo,DENG Hai long,CAO Shi jiang,et al.Carbon emission quantification and evaluation system of hot mix asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2019,39(03):1-9.
点击复制

热拌沥青混合料碳排放量化与评价体系()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第39卷
期数:
2019年03期
页码:
1-9
栏目:
道路工程
出版日期:
2019-05-15

文章信息/Info

Title:
Carbon emission quantification and evaluation system of hot mix asphalt mixture
作者:
彭波邓海龙曹世江李文瑛
1. 长安大学 公路学院,陕西 西安 710064; 2. 中国电建集团贵阳勘测设计研究院有限公司,贵州 贵阳 550081; 3. 西安公路研究院,陕西 西安 710003)
Author(s):
PENG Bo DENG Hailong CAO Shijiang LI Wenying
(1. School of Highway, Changan University, Xian 710064, Shaanxi, China; 2. Guiyang Engineering Corporation Limited of Power China, Guiyang 550081, Guizhou, China; 3. Xian Highway Institute, Xian 710003, Shaanxi, China)
关键词:
道路工程碳排放量化模型层次分析法评价体系
Keywords:
road engineering carbon emission quantitative model analytic hierarchy process evaluation system
文献标志码:
A
摘要:
为解决目前尚未建立热拌沥青混合料碳排放评价体系,无法正确反映沥青混合料碳排放水平和进一步开展沥青路面低碳减排工作等问题,通过对中国21条高等级公路沥青路面的碳排放来源调查,结合联合国政府间气候变化专门委员会和中国国家统计局提供的计算参数,建立了热拌沥青混合料能耗碳排放量化模型和高温挥发碳排放量化模型。运用层次分析法(AHP)得出不同种类沥青混合料碳排放的权重,依据同种沥青混合料在各个碳排放环节中的权重系数和碳排放量,采用海明贴近度理论,明确了同类沥青混合料在各施工环节碳排放总量的加权均值,并结合中国“十三五”规划提出的温室气体减排要求,提出了不同类型沥青混合料的碳排放总量评价标准及各施工环节的碳排放评价标准。研究结果表明:集料加热、沥青加热和混合料拌合环节的能耗碳排放分别占热拌沥青混合料能耗碳排放总量的65.62%、15.30%和12.22%;碾压、摊铺环节的高温挥发碳排放分别占沥青混合料高温挥发碳排放总量的91.56%和7.02%;以中国减排目标值、实测碳排放均值为碳排放分级评价界限,将热拌沥青混合料碳排放水平分为A级(轻度排放)、B级(中度排放)、C级(重度排放)。该研究成果提供了不同类型沥青混合料的碳排放评价指标,对指导沥青路面低碳施工具有积极意义。
Abstract:
In order to solve the problems that a carbon emission evaluation system for hot mix asphalt mixture was not yet to be established, the carbon emission level of an asphalt mixture could not be correctly identified, and reduction of carbon emission in asphalt pavement needs further studied, the carbon emission sources for 21 highgrade asphalt pavements in China was adopted. The emission source survey, combined with the calculation parameters provided by the UN Intergovernmental Panel on Climate Change (IPCC) and the National Bureau of Statistics of China, a quantitative model for energy consumption carbon emissions of a hot mix asphalt mixture and a quantitative model for high temperature volatile carbon emissions were established. The weight of the carbon emissions for different asphalt mixture types was obtained by using an analytic hierarchy process (AHP). According to the weight coefficients and carbon emission of the same kind of asphalt mixture in each carbon emission link, the same kind of asphalt mixtures were identified using Hamming closeness theory. In the weighted average of the total carbon emissions in each construction link, combined with the emission reduction requirements proposed in the China “13th FiveYear Plan”, the evaluation standard for the total carbon emission for different asphalt mixture types and the carbon emissions of various construction links were proposed. The results show that the energy consumption carbon emissions for aggregate heating, asphalt heating, and mixture mixing account for 65.62%, 15.30%, and 12.22% of the total carbon emissions of the asphalt mixture, respectively. The high temperature of rolling and paving the volatile carbon emissions accounted for 91.56% and 7.02% of the hightemperature volatile carbon emissions of the asphalt mixture, respectively, and the China emission reduction target values and the measured carbon emission mean values are used as the carbon emission classification evaluation limits. The hot mixed asphalt mixture carbon emission level are divided into three types: A (mild emissions), B (medium emissions), and C (severe emissions). The research results provide evaluation indexes for carbon emissions of different types of asphalt mixtures, and these indexes are significant for ensuring low carbon concentrations in asphalt pavements. 7 tabs, 1 fig, 22 refs.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]王建伟,李娉,高洁,等.中国交通运输碳减排区域划分[J].长安大学学报(自然科学版),2012,32(01):0.
[11]彭 波,蔡春丽,胡如安.高速公路沥青路面能耗与碳排放评价[J].长安大学学报(自然科学版),2016,36(05):8.
 PENG Bo,CAI Chun-li,HU Ru-an.Energy consumption and carbon emission evaluation of expressway asphalt pavement[J].Journal of Chang’an University (Natural Science Edition),2016,36(03):8.

更新日期/Last Update: 2019-05-23