[1]罗育明,张建仁,张旭辉,等.自密实混凝土加固碳化混凝土界面剪切性能试验[J].长安大学学报(自然科学版),2019,39(02):65-72.
 LUO Yu ming,ZHANG Jian ren,ZHANG Xu hui,et al.Experimental of interface shear behavior between selfcompactingconcrete and carbonation concrete[J].Journal of Chang’an University (Natural Science Edition),2019,39(02):65-72.
点击复制

自密实混凝土加固碳化混凝土界面剪切性能试验()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第39卷
期数:
2019年02期
页码:
65-72
栏目:
桥梁与隧道工程
出版日期:
2019-03-31

文章信息/Info

Title:
Experimental of interface shear behavior between selfcompactingconcrete and carbonation concrete
作者:
罗育明张建仁张旭辉彭建新
(1. 长沙理工大学 土木工程学院,湖南 长沙 410114; 2. 湖南交通职业技术学院 路桥工程学院,湖南 长沙 410132; 3. 湘潭大学 土木工程与力学学院,湖南 湘潭 411105)
Author(s):
LUO Yuming12 ZHANG Jianren1 ZHANG Xuhui13 PENG Jianxin
1. School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China;2. School of Road and Bridge Engineering, Hunan Communication Polytechnic, Changsha 410132, Hunan, China;〖JP〗3. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, Hunan, China
关键词:
桥梁工程自密实混凝土直剪试验混凝土碳化剪切性能
Keywords:
bridge engineering selfcompacting concrete direct shear test concrete carbonation shear behavior
文献标志码:
A
摘要:
为研究混凝土构件长期暴露大气中表面形成的碳化层对自密实混凝土加固混凝土黏结界面剪切性能的影响,为该类结构加固设计提供依据,设计不同碳化程度Z形黏结试件进行直剪试验,考察混凝土碳化深度、混凝土强度和界面处理方式等对黏结试件破坏形式和抗剪强度的影响,并在试验基础上建立碳化混凝土黏结界面抗剪强度预测模型。研究结果表明:混凝土碳化引起黏结界面剪切裂缝分布形式的改变;混凝土碳化后强度和弹性模量均有所增强,在黏结界面间形成一个局部强化区域,剪切裂缝由原来的界面裂缝逐渐向老混凝土内部转移,扩展至碳化强化区与未碳化区交界面;混凝土碳化使得黏结界面抗剪强度增强,碳化初期,黏结界面抗剪强度增长迅速,达到一定碳化深度后,其增长幅度变小;黏结界面抗剪强度与新老混凝土的强度、界面处理方式等也密切相关,对于Ⅰ类和Ⅱ类界面,一定范围内增大新混凝土强度对于提高界面抗剪强度具有积极作用;当新老混凝土强度相差超过2个标号时,继续提高新混凝土强度作用不大;Ⅲ类界面植筋能有效提高抗剪强度,且其抗剪强度由较低强度混凝土控制。
Abstract:
In order to investigate the effects of carbonation on the interface shear behavior between selfcompacting concrete and carbonation concrete, when the concrete structures exposed to air for a long period of time will become carbonized, and help determine the reinforcement applied to carbonized concrete structures. A series of Ztype specimens with different carbonation depths were designed and tested under a direct shear force. The influence of the concrete carbonation depth, concrete strength, and interfacial treatment modes on the failure mode and ultimate shear strength of the tested specimens were clarified. Further, an analytical model was developed to predict the shear strength between the selfcompacting concrete and the carbonation concrete based on the experimental. The results show that concrete carbonation leads to the change of shear crack distribution at bond interface. A local reinforced region is formed within the interface owing to the increase in the ultimate strength and elastic modulus of concrete caused by carbonization. The shear crack gradually transfers from the original interface crack to the old concrete, and extends to the interface between the carbonization strengthening area and the noncarbonization area. The carbonation also leads to an increase in the shear strength. The increase in shear strength within the interface occurs extremely quickly for the specimens during the early stage of carbonization,and then shows a slightly increase as the carbonation depth exceeds a critical value. The shear strength within the interface is also affected by the concrete strength and the interfacial treatment modes etc. For specimens with typeⅠ and typeⅡ interface modes, the increase in new concrete strength within a certain range can effectively improve the shear strength. The further increase in the new concrete strength has little influence on the increase in shear strength as it exceeds a critical value. Moreover, the typeⅢ interface mode with a plated reinforcement bar significantly increases the shear strength, and it is dependent on the concrete with an ultimate low strength. 3 tabs, 9 figs, 23 refs.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(02):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(02):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(02):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(02):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(02):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(02):44.
[11]张建仁,罗育明,张旭辉,等.不同持荷下自密实混凝土加固既有RC梁抗弯性能试验[J].长安大学学报(自然科学版),2019,39(04):62.
 ZHANG Jian ren,LUO Yu ming,ZHANG Xu hui,et al.Experiment of flexural behavior of an existing RC beam reinforced by selfcompacting concrete under different continuous loading[J].Journal of Chang’an University (Natural Science Edition),2019,39(02):62.

更新日期/Last Update: 2019-04-01