[1]叶亚丽,徐全亮,宁选杰,等.基于非均布荷载的柔性基层沥青路面纵向开裂分析[J].长安大学学报(自然科学版),2019,39(02):35-46.
 YE Ya li,XU Quan liang,NING Xuan jie,et al.Analysis on longitudinal cracking of flexible base asphalt pavement undernonuniform distributed tire pressure[J].Journal of Chang’an University (Natural Science Edition),2019,39(02):35-46.
点击复制

基于非均布荷载的柔性基层沥青路面纵向开裂分析()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第39卷
期数:
2019年02期
页码:
35-46
栏目:
道路工程
出版日期:
2019-03-31

文章信息/Info

Title:
Analysis on longitudinal cracking of flexible base asphalt pavement undernonuniform distributed tire pressure
作者:
叶亚丽徐全亮宁选杰余四新
(1. 山东交通学院 交通土建工程学院,山东 济南 250357; 2. 北京交科公路勘察设计研究院有限公司,北京 100191; 3. 齐鲁交通发展集团有限公司,山东 济南 250102)
Author(s):
YE Yali1 XU Quanliang2 NING Xuanjie2 YU Sixin3
(1. School of Transportation and Civil Engineering, Shandong Jiaotong University, Jinan 250357, Shandong, China;〖JP〗2. RIOH Transport Consultants Ltd., Beijing 100191, China; 3. Qilu TransportationDevelopment Group, Co., Ltd., Jinan 250102, Shandong, China)
关键词:
道路工程加速加载试验非均布条形轮胎荷载最大剪应力胎纹预估模型裂缝发展
Keywords:
road engineering accelerated loading failure test nonuniform distributed strip tire load maximum shear stress tire tread pattern prediction model crack propagation
文献标志码:
A
摘要:
为研究柔性基层沥青路面纵向裂缝的产生机理和发展规律,实测了子午线货车轮胎在不同轴重和胎压下的接地印迹与应力。借助实测的子午线轮胎接地面积和简化的非均布轮载应力,建立了轮胎路面非均布条形荷载力学计算模型,对不同沥青层厚度的柔性基层沥青路面结构进行了三维有限元分析,计算超载和设计轴载工况下2种路面结构最大拉应力和最大剪应力值及其发生位置,并依托级配碎石基层沥青路面足尺试验路进行了加速加载破坏试验,得到了中低温环境下沥青层开裂类型、发生位置和发展变化规律,提出以轮胎胎纹间隙处的最大剪应力作为沥青路面自顶向下开裂的力学指标;基于力学分析指标和足尺试验路疲劳破坏作用次数,构建沥青路面自顶向下疲劳开裂预估模型。研究结果表明:柔性基层沥青路面最大拉应力远离轮迹带,其应力值远小于沥青混合料的容许拉应力,对沥青层自顶向下扩展的纵向开裂无影响;最大剪应力发生在路表或距路表一定深度范围内,轴载越大,最大剪应力越接近路表,水平力越大,最大剪应力越靠近轮底中心;当轮载水平力系数由0增加至0.5时,最大剪应力由轮底边缘移至子午线轮胎第2条凸纹与第3条凸纹间隙处。足尺试验路重轴载加速加载破坏试验时,柔性基层沥青路面最先发生了位于轮底中心、源自路表自顶向下扩展的间断纵向裂缝,随重复轮载作用纵向裂缝逐渐连通,裂缝的扩展方向与轮胎胎纹走向一致,印证了纵向开裂源于轮底轮胎胎纹间隙处的理论分析结果,明晰了柔性基层沥青路面自顶向下开裂的关键破坏源。
Abstract:
To study the mechanism of longitudinal cracks in asphalt pavement with a flexible base course and the law of crack development, the grounding impression and stress of truck tires under different axle loads and tire pressures were measured.With the help of the measured tire grounding area and simplified nonuniform distributed contact stress from the radial tires, a mechanical calculation model of tirepavement under a nonuniform distributed strip load was established. A 3D finite element analysis was developed for flexible base asphalt pavement structures with different asphalt layer thicknesses. Through the analysis, the maximum tensile stress and maximum shear stress and their acting positions on the two pavement structures were calculated under the overload conditions and the designed axle load conditions. An accelerated loading failure test was also conducted on a fullscale test road of graded crushed stone base asphalt pavement to obtain the type, location and development law of asphalt layer cracks in medium and lowtemperature environments. The maximum shear stress at the gap between the patterned ribs of the tire tread was proposed as the mechanical index of the topdown cracking of asphalt pavement. Then, based on the mechanical analysis and fatigue failure times of the test road, a topdown fatigue cracking prediction model of asphalt pavement was established. The results show that the maximum tensile stress of flexible base asphalt pavement is far away from the wheel track zone, and its value is far less than the allowable tensile stress of asphalt mixture, which has no effect on the topdown longitudinal cracks. The maximum horizontal shear stress occurs on the pavement surface or within a certain depth from the pavement surface, and the greater the axle load, the closer the maximum shear stress. In addition, the greater the horizontal force, the closer the maximum shear stress is to the center of the wheel bottom, and when the coefficient of horizontal force increases from 0 to 0.5, the maximum shear stress moves from the edge of the wheel bottom to the gap between the second and third patterned ribs of the radial tire. During the accelerated loading failure test with a heavy axle load on the fullscale test road, the flexible base asphalt pavement first has short topdown longitudinal cracks originating from the pavement surface. With the action of the wheel load, these short cracks are connected to each other and are located at the center of the bottom of the wheel. In addition, the direction of their propagation is consistent with that of the patterned ribs, which supports the theoretical analysis results, and indicating that longitudinal cracking originates from the gap between the patterned ribs of the bottom of the wheel. 8 tabs, 21 figs, 28 refs.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(02):1.
[11]董忠红,吕彭民.考虑轮迹横向分布的沥青路面疲劳寿命修正系数[J].长安大学学报(自然科学版),2011,31(06):21.
 DONG Zhong-hong,LU Peng-min.Correcting factor of asphalt pavement fatigue life considering wheel-path lateral distribution[J].Journal of Chang’an University (Natural Science Edition),2011,31(02):21.
[12]韩振强,沙爱民,胡力群,等.级配碎石基层沥青路面合理沥青层厚度[J].长安大学学报(自然科学版),2018,38(04):1.
 HAN Zhen qiang,SHA Ai min,HU Li qun,et al.Reasonable thickness of asphalt layer in graded crushed stone base asphalt pavement[J].Journal of Chang’an University (Natural Science Edition),2018,38(02):1.

更新日期/Last Update: 2019-04-01