[1]周敉,赵威,温杰,等.基于可靠度的桥梁船撞作用荷载组合分项系数[J].长安大学学报(自然科学版),2018,38(06):155-174.
 ZHOU Mi,ZHAO Wei,WEN Jie,et al.Combined partial coefficient of shipbridgecollision loads based on reliability[J].Journal of Chang’an University (Natural Science Edition),2018,38(06):155-174.
点击复制

基于可靠度的桥梁船撞作用荷载组合分项系数()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第38卷
期数:
2018年06期
页码:
155-174
栏目:
桥梁与隧道工程
出版日期:
2018-12-01

文章信息/Info

Title:
Combined partial coefficient of shipbridgecollision loads based on reliability
作者:
周敉赵威温杰姜永存
(1. 长安大学 旧桥检测与加固技术交通行业重点实验室,陕西 西安 710064;2. 广东江中高速公路有限公司,广东 中山 528414)
Author(s):
ZHOU Mi ZHAO Wei WEN Jie JIANG Yongcun
(1. Key Laboratory of Old Bridge Detection and Reinforcement Technology of Ministry of Transportation,Changan University, Xian 710064, Shaanxi, China; 2. Guangdong River Highway Co., Ltd.,Zhongshan 528414, Guangdong, China)
关键词:
桥梁工程桥梁船撞塔克斯特拉准则FAM法可靠度指标分项系数
Keywords:
bridge engineering ship bridge collision Turkstras principle FAM method reliability index partial coefficient
文献标志码:
A
摘要:
对船撞偶然组合问题,现行的桥梁设计规范给出了相应的组合分项系数。为了分析现行规范给出的分项系数下桥梁结构可靠度指标水平,寻求荷载组合分项系数与桥梁结构可靠度指标之间的关系,需要对桥梁船撞偶然荷载组合进行深入研究。基于有限元神经网络Monte Carlo(FAM)法和极限状态设计法,计算桥梁结构船撞偶然组合不同荷载分项系数下的可靠度指标。以练江1号桥主桥为依托工程,采用有限元软件建立全桥空间有限元动力模型,以荷载冲击谱模拟船撞桥墩的动力时程,塔克斯特拉准则作为荷载组合理论依据,确定船撞荷载与汽车荷载作用下结构的失效模式。提取船撞荷载与荷载效应样本、汽车荷载与荷载效应样本、船撞和汽车荷载组合与荷载效应样本,对这些样本进行BP神经网络训练,当训练结果满足精度要求时,对船撞荷载分项系数ψCV取1.0,汽车荷载分项系数ψLL分别取0.5、0.6、0.7、0.8、0.9、1.0,并采用Monte Carlo法计算各分项系数下桥梁结构的失效概率和可靠度指标,将不同分项系数下的可靠度指标与目标可靠度指标进行比较。研究结果表明:跨径在150 m以内的连续刚构桥荷载组合分项系数ψCV、ψLL,建议其值为1.0、0.8;FAM法可以方便、快速地求解桥梁结构船撞偶然组合下的可靠度指标,〖JP2〗建立可靠度指标β与船撞荷载分项系数ψCV、汽车荷载分项系数ψLL的影响面关系,并给出荷载分项系数建议值,为船撞偶然组合设计及桥梁船撞的风险评估提供依据。
Abstract:
For accidental ship collisions, the existing bridge design code has used the corresponding partial coefficient of combination. In order to analyze the reliability index level of the bridge structure under the partial coefficient given by the current specification, and find the relationship between load combination partial coefficient and bridge structural reliability index, it was necessary to study the accidental load combination of bridgeship collision in depth. Based on a finite elementneural networkMonte Carlo method and limit state design method, the reliability index of a bridge structure under different load partial coefficients was calculated. Taking the No.1 Lianjiang Bridge as the main bridge supporting project, finite element software was used to establish the fullbridge space finite element dynamic model, and the load shock spectrum was used to simulate the dynamic time history of a ship colliding with a pier. Turkstras principle was served as a theoretical basis for the load combination to determine the failure mode of the structure under ship impact and vehicle loads. The load and load effect samples of the ship collision, the vehicle, and the combination of ship collision and vehicle were extracted, and the BP neural network was trained on these samples. When the training results met the accuracy requirements, the partial coefficient ψCV of the ship impact load was taken as 1.0, and the partial factor ψLL of the vehicle load was taken as 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The Monte Carlo method was used to calculate the failure probability and reliability index of the bridge structure under different partial coefficients. the reliability index under different partial coefficients and the target reliability index were compared. The results show that a ship collision load partial coefficient is 1.0 and a vehicle load partial coefficient is 0.8, which obtained from a continuous rigidframe bridge with a span of less than 150 m. The finite elementneural networkMonte Carlo method can quickly and easily solve the reliability index of the bridge structure with accidental ship collision, and establish the relationship between the reliability index β, ship collision load partial coefficient ψCV, and the vehicle load partial coefficient ψLL. The suggested value of the load component coefficient is also given. This method provides a basis for the accidentalshipcollision combination design and the risk assessment of bridgeship collisions. 9 tabs, 11 figs, 24 refs.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(06):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(06):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(06):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(06):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(06):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(06):44.

更新日期/Last Update: 2018-12-18