[1]陈正伟,徐松,张洪亮,等.基于实测高程和整车模型的沥青路面平整度力学预估方法[J].长安大学学报(自然科学版),2018,38(05):58-66.
 CHEN Zheng wei,XU Song,ZHANG Hong liang,et al.Mechanistic method of predicting asphalt pavement roughness using realpavement profile and complete vehicle model[J].Journal of Chang’an University (Natural Science Edition),2018,38(05):58-66.
点击复制

基于实测高程和整车模型的沥青路面平整度力学预估方法()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第38卷
期数:
2018年05期
页码:
58-66
栏目:
道路工程
出版日期:
2018-09-30

文章信息/Info

Title:
Mechanistic method of predicting asphalt pavement roughness using realpavement profile and complete vehicle model
作者:
陈正伟徐松张洪亮张高望
(1. 长安大学 公路学院,陕西 西安 710064; 2. 山东省交通规划设计院,山东 济南 250031)
Author(s):
CHEN Zhengwei1 XU Song2 ZHANG Hongliang1 ZHANG Gaowang1
关键词:
道路工程路面平整度力学预估整车模型真实断面国际平整度指数预防性养护时机
Keywords:
road engineering pavement roughness mechanistic predicting whole vehicle model real profile international roughness index timing of preventive maintenance
文献标志码:
A
摘要:
为准确预估沥青路面平整度的发展以确定其预防性养护的时机,考虑沥青路面永久变形与车辆动荷载的相互促进作用,建立沥青路面平整度理论预估方法。在车辆动力学仿真软件TruckSim中,考虑车辆的倾覆、转动以及轮胎的特性,采用Convey Van整车模型,公路中线设置为直线,根据输入的中线各点的高程数据得到其真实断面,路面的摩阻系数设置为常数,分析了以80 km/h速度行驶的车辆对沥青路面施加的动荷载,并根据沥青路面永久变形进行轴载的等效换算。利用BISAR软件,采用分层总和法计算路面的永久变形。将实测的路面高程数据减去路面的永久变形量,即为一年后的路面高程,每年重复以上的过程。对于1/4车辆模型,采用传递矩阵法,计算出了变量传递矩阵和系数矩阵,结合VB程序计算得出沥青路面每年的国际平整度指数。综合以上过程,给出了平整度预估步骤和算例。结果表明:变量传递矩阵和系数矩阵的误差在容许的范围内,考虑动荷载和永久变形的相互促进作用建立沥青路面平整度预估模型是可行的,路面的平整度逐年变差且平整度衰减的速率逐年变大;该力学预估方法基于路面高程模型和车辆模型,与实际工况比较吻合,预估结果准确可靠,有助于准确确定沥青路面预防性养护的时机。
Abstract:
In order to accurately predict the development of the roughness of asphalt pavement to determine the timing of preventive maintenance of the pavement, a mechanistic prediction method of the asphalt pavement roughness was developed, which considers the mutual promotion between the permanent deformation of the asphalt pavement and the dynamic loads exerted by a vehicle. Using the vehicle dynamics simulation software TruckSim, a Convey Van vehicle model was adopted to account the vehicle’s overturning, turning and tire characteristics. the highway center line was set to a straight line, and the actual profile of the center line was obtained according to the elevation data of each point of the center line. The friction coefficient of the pavement was set to a constant, the dynamic load applied to the asphalt pavement by a vehicle traveling at 80 km/h was analyzed, and the equivalent conversion of the axle load was performed according to the permanent deformation equivalence of the asphalt pavement. The layerwise summation method was employed to calculate the permanent deformation of the pavement by the BISAR software. Then, the permanent deformation was subtracted from the pavement profile. Consequently, the pavement profile at the end of each year was obtained, and the above mentioned process was repeated for each year. Based on the quartervehicle model, the vibrations of the vehicle were analyzed by the transfer matrix method in which the transfer matrix and coefficient of variables were computed. Accordingly, the international roughness index (IRI) of the pavement at the end of each year was calculated via the VB procedure. The roughness prediction procedures and case study were provided. The results show that the errors of the transfer matrix and coefficient of variables are tolerable. It is possible to predict the development of pavement roughness when the mutual promotion between the dynamic load and permanent deformation is taken into account. The deterioration rate of the pavement roughness varies for different pavement ages the pavement roughness deteriorates increasingly with time. The pavement profile model and the complete vehicle model are in good agreement with the actual ones, the method developed in this study can accurately predict the development of asphalt pavement roughness, which helps accurately determine the timing of preventive maintenance of the asphalt pavement. 4 tabs, 7 figs, 25 refs.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(05):1.

更新日期/Last Update: 2018-10-23