参考文献/References:
[1] 中国城市轨道交通协会.2023年中国内地城轨交通线路概况[J].城市轨道交通,2024(1):8-9.
China Association of Metros.General situation of urban rail transit lines in China in 2023[J].China Metros,2024(1):8-9.
[2]雷 斌,张 源,郝亚睿,等.城市轨道交通短期客流预测研究进展[J].长安大学学报(自然科学版),2022,42(1):79-96.
LEI Bin,ZHANG Yuan,HAO Ya-rui,et al.Research progress on short-term passenger flow forecast model of urban rail transit[J].Journal of Chang'an University(Natural Science Edition),2022,42(1):79-96.
[3]马超群,李培坤,朱才华,等.基于不同时间粒度的城市轨道交通短时客流预测[J].长安大学学报(自然科学版),2020,40(3):75-83.
MA Chao-qun,LI Pei-kun,ZHU Cai-hua,et al.Short-term passenger flow forecast of urban rail transit based on different time granularities[J].Journal of Chang'an University(Natural Science Edition),2020,40(3):75-83.
[4]MILENKOVIC M,VADLENKA L,MELICHAR V,et al.SARIMA modelling approach for railway passenger flow forecasting[J].Transport,2018,33(5):1113-1120.
[5]马超群,李培坤,朱才华,等.基于不同时间粒度的城市轨道交通短时客流预测[J].长安大学学报(自然科学版),2020,40(3):75-83.
MA Chao-qun,LI Pei-kun,ZHU Cai-hua,et al.Short-term passenger flow forecast of urban rail transit based on different time granularities[J].Journal of Chang'an University(Natural Science Edition),2020,40(3):75-83.
[6]李得伟,颜艺星,曾险峰.城市轨道交通进站客流量短时组合预测模型[J].都市快轨交通,2017,30(1):54-58,64.
LI De-wei,YAN Yi-xing,ZENG Xian-feng.Combined short-term prediction model of station entry flow in urban rail transit[J].Urban Rapid Rail Transit,2017,30(1):54-58,64.
[7]WILLIAMS B M,HOEL L A.Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:Theoretical basis and empirical results[J].Journal of Transportation Engineering,2003,129(6):664-672.
[8]SUN P,ALJERI N,BOUKERCHE A.Machine learning-based models for real-time traffic flow prediction in vehicular networks[J].IEEE Network,2020,34(3):178-185.
[9]王 莹,韩宝明,张 琦,等.基于SARIMA模型的北京地铁进站客流量预测[J].交通运输系统工程与信息,2015,15(6):205-211.
WANG Ying,HAN Bao-ming,ZHANG Qi,et al.Forecasting of entering passenger flow volume in Beijing subway based on SARIMA model[J].Journal of Transportation Systems Engineering and Information Technology,2015,15(6):205-211.
[10]孙晓黎,马超群,朱才华.基于XGBoost的轨道交通短时客流预测精度分析[J].交通科技与经济,2021,23(1):54-58.
SUN Xiao-li,MA Chao-qun,ZHU Cai-hua.XGBoost-based analysis of prediction accuracy for short-term passenger flow in rail transit[J].Technology and Economy in Areas of Communications,2021,23(1):54-58.
[11]ZHAO Y Y,REN L,MA Z L,et al.Novel three-stage framework for prioritizing and selecting feature variables for short-term metro passenger flow prediction[J].Transportation Research Record,2020(2674):192-205.
[12]KANG L L,HU G J,HUANG H,et al.Urban traffic travel time short-term prediction model based on spatio-temporal feature extraction[J].Journal of Advanced Transportation,2020,2020:3247847.
[13]VAN LINT J W C,VAN HINSBERGEN C.Short-term traffic and travel time prediction models[J].Artificial Intelligence Applications to Critical Transportation Issues,2012,22(1):22-41.
[14]CHAN K Y,DILLON T S,SINGH J,et al.Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm[J].IEEE Transactions on Intelligent Transportation Systems,2011,13(2):644-654.
[15]ZHENG W Z,LEE D H,SHI Q X.Short-term freeway traffic flow prediction:Bayesian combined neural network approach[J].Journal of Transportation Engineering,2006,132(2):114-121.
[16]MA X L,ZHANG J Y,DU B W,et al.Parallel architecture of convolutional bi-directional LSTM neural networks for network-wide metro ridership prediction[J].IEEE Transactions on Intelligent Transportation Systems,2018,20(6):2278-2288.
[17]HAO S Y,LEE D H,ZHAO D.Sequence to sequence learning with attention mechanism for short-term passenger flow prediction in large-scale metro system[J].Transportation Research Part C:Emerging Technologies,2019,107:287-300.
[18]谢昊阳.基于图卷积网络的城市轨道交通多站点客流预测研究[D].兰州:兰州交通大学,2023.
XIE Hao-yang.Research on multi-station passenger flow forecast of urban rail transit based on graph-convolution network[D].Lanzhou:Lanzhou Jiatong University,2023.
[19]孙凤美.基于图注意力神经网络的地铁短时客流量预测[D].大连:大连海事大学,2023.
SUN Feng-mei.Short-term passenger flow forecast of subway based on graph attention neural network[D].Dalian:Dalian Maritime University,2023.
[20]WU Z H,PAN S R,CHEN F W,et al.A comprehensive survey on graph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):4-24.
[21]YU B,YIN H T,ZHU Z X,et al.Spatio-temporal graph convolutional networks[C]//ACM.Proceedings of the 27th International Joint Conference on Artificial Intelligence.Stockholm:ACM,2018:3634-3640.
[22]刘晓磊,段征宇,余 庆,等.基于图卷积循环神经网络的城市轨道客流预测[J].华南理工大学学报(自然科学版),2022,50(3):21-27.
LIU Xiao-lei,DUAN Zheng-yu,YU Qing,et al.Passenger flow forecast of urban rail transit based on graph convolution and recurrent neural network[J].Journal of South China University of Technology(Natural Science Edition),2022,50(3):21-27.
[23]ILBEIGI M,ASHURI B,JOUKAR A.Time-series analysis for forecasting asphalt-cement price[J].Journal of Management in Engineering,2017,33(1):04016030.
[24]ZHOU H Y,ZHANG S H,PENG J Q,et al.Informer:Beyond efficient transformer for long sequence time-series forecasting[C]//Assoc Advancement Artificial Intelligence.Proceedings of the AAAI-21 Technical Tracks 12.Los Angeles:Assoc Advancement Artificial Intelligence,2021:11106-11115.
[25]WU H X,HU T G,LIU Y,et al.TimesNet:Temporal 2D-variation modeling for general time series analysis[EB/OL].(2022-10-05)[2025-03-05].https://arxiv.org/abs/2210.02186v3.
相似文献/References:
[1]王建伟,李娉,高洁,等.中国交通运输碳减排区域划分[J].长安大学学报(自然科学版),2012,32(01):0.
[2]李曙光,周庆华.具有破坏排队的离散时间动态网络装载算法[J].长安大学学报(自然科学版),2012,32(01):0.
[3]凌海兰,郗恩崇.基于随机波动条件的公交客运量预测模型[J].长安大学学报(自然科学版),2012,32(01):0.
[4]田娥,肖庆,陆小佳,等.安全驾驶的横向安全预警报警阈值的确定[J].长安大学学报(自然科学版),2012,32(01):0.
[5]侯贻栋,赵炜华,魏 朗,等.驾驶人空间距离判识规律心理学分析[J].长安大学学报(自然科学版),2012,32(03):86.
HOU Yi-dong,ZHAO Wei-hua,WEI Lang,et al.Analysis on psychology in cognitive distance about drivers[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):86.
[6]赵跃峰,张生瑞,魏 华.隧道群路段运行速度特性分析[J].长安大学学报(自然科学版),2012,32(06):67.
ZHAO Yue-feng,ZHANG Sheng-rui,WEI hua.Operating speed characteristics of tunnel group section[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):67.
[7]林 杉,许宏科,刘占文.一种高速公路隧道交通流元胞自动机模型[J].长安大学学报(自然科学版),2012,32(06):73.
LIN Shan,XU Hong-ke,LIU Zhan-wen.One cellular automaton traffic flow model for expressway tunnel[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):73.
[8]刘俊德,徐 兵,梁永东,等.交通事故下高速公路行车安全评估[J].长安大学学报(自然科学版),2012,32(06):78.
LIU Jun-de,XU bing,LIANG Yong-dong,et al.Traffic safety assessment of expressway in the accident[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):78.
[9]芮海田,吴群琪,赵跃峰,等.公路建设对区域经济发展的影响分析——以陕西省为例[J].长安大学学报(自然科学版),2012,32(06):83.
RUI Hai-tian,WU Qun-qi,ZHAO Yue-feng,et al.Influence of highway construction on regional economy
development——taking Shaanxi as an example[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):83.
[10]彭 辉,续宗芳,韩永启,等.城市群城际运输结构配置客流分担率模型[J].长安大学学报(自然科学版),2012,32(02):91.
PENG Hui,XU Zong-fang,HAN Yong-qi,et al.Sharing ratios model of passenger flows in intercity transportation
structure configuration among urban agglomeration[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):91.
[11]王玉萍,陈宽民,杨富社,等.城市轨道交通客流预测结果的技术分析体系[J].长安大学学报(自然科学版),2011,31(03):72.
WANG Yu-ping,CHEN Kuan-min,YANG Fu-she,et al.Analysis system of urban rail transit passenger flow forecast result[J].Journal of Chang’an University (Natural Science Edition),2011,31(2):72.