[1]钱汉强,时 玥,陈艳艳,等.考虑时间周期的图神经网络地铁客流预测[J].长安大学学报(自然科学版),2025,45(2):154-164.[doi:10.19721/j.cnki.1671-8879.2025.02.013]
 QIAN Han-qiang,SHI Yue,CHEN Yan-yan,et al.Graph neural network-based subway passenger flow prediction considering time periods[J].Journal of Chang’an University (Natural Science Edition),2025,45(2):154-164.[doi:10.19721/j.cnki.1671-8879.2025.02.013]
点击复制

考虑时间周期的图神经网络地铁客流预测()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年2期
页码:
154-164
栏目:
交通工程
出版日期:
2025-03-31

文章信息/Info

Title:
Graph neural network-based subway passenger flow prediction considering time periods
文章编号:
1671-8879(2025)02-0154-11
作者:
钱汉强12时 玥12陈艳艳12王嘉晨3
(1. 北京工业大学 城市交通学院,北京 100124; 2. 北京工业大学 交通工程北京市重点实验室,北京 100124; 3. 布朗大学 工程学院,罗德岛 普罗维登斯 02912)
Author(s):
QIAN Han-qiang12 SHI Yue12 CHEN Yan-yan12 WANG Jia-chen3
(1. School of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China; 2. Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China; 3. School of Engineering, Brown University, Providence 02912, Rhode Island, USA)
关键词:
交通工程 客流预测 图神经网络 地铁 深度学习
Keywords:
traffic engineering passenger flow prediction graph neural network subway deep learning
分类号:
U491.14
DOI:
10.19721/j.cnki.1671-8879.2025.02.013
文献标志码:
A
摘要:
为了准确预测地铁进出站客流,提出一种基于深度学习算法的图神经时空网络(GNSTNet)地铁客流预测模型,该模型以历史24 h地铁进出站客流、天气和时间标签数据为输入,预测未来1 h内全网每个站点的进出站客流量,通过逐小时站点进出站客流和地铁网络邻接矩阵构建地铁客流时空图; 在GNSTNet模型中,利用图神经网络提取每一时间步的空间维度特征,通过傅里叶变换提取时间序列潜在周期性,并使用卷积神经网络提取时间维度的特征。研究结果表明:在北京地铁2021年6月的数据集中,基于图神经网络的地铁客流预测模型取得了比6种基准模型更高的预测精度; 相较于精度最高的基准模型,平均绝对误差平均减少了14.97%,均方根误差平均减少了13.35%; 基于图神经网络的地铁客流预测模型通过融合图神经网络、傅里叶变换和卷积神经网络,相较于传统算法有效地提升了对于全网地铁进出站客流量的预测精度。
Abstract:
To achieve precise subway passenger entry and exit flows prediction, a deep learning-based for subway passenger flow pediction graph neural spatio-temporal network(GNSTNet), was proposed. Historical 24-hour subway entry and exit flow data, weather and time labels were taken into account as inputs, and they were used to predict the hourly passenger entry and exit flows for every station in the entire network for the next hour. A subway passenger flow spatio-temporal graph were constructed using the hourly station entry and exit flows and subway network adjacency matrix. In the GNSTNet model, a graph neural network was used to extract the spatial features at each time step. The Fourier transform was used to extract the potential periodicity in the time series, and a convolutional neural network was used to extract the temporal features. The research results show that on a dataset from the Beijing Subway in June 2021, the graph neural network-based subway passenger flow prediction model outperforms six benchmark models, with an average reduction of 14.97% in the mean absolute error and 13.35% in the root mean squared error compared to the most accurate benchmark model. The graph neural networks-based subway passenger flow prediction model effectively improves the accuracy of predicting the passenger entry and exit flow for the entire subway network compared to traditional algorithms by integrating graph neural network, Fourier transform and convolutional neural network.2 tabs, 9 figs, 25 refs.

参考文献/References:

[1] 中国城市轨道交通协会.2023年中国内地城轨交通线路概况[J].城市轨道交通,2024(1):8-9.
China Association of Metros.General situation of urban rail transit lines in China in 2023[J].China Metros,2024(1):8-9.
[2]雷 斌,张 源,郝亚睿,等.城市轨道交通短期客流预测研究进展[J].长安大学学报(自然科学版),2022,42(1):79-96.
LEI Bin,ZHANG Yuan,HAO Ya-rui,et al.Research progress on short-term passenger flow forecast model of urban rail transit[J].Journal of Chang'an University(Natural Science Edition),2022,42(1):79-96.
[3]马超群,李培坤,朱才华,等.基于不同时间粒度的城市轨道交通短时客流预测[J].长安大学学报(自然科学版),2020,40(3):75-83.
MA Chao-qun,LI Pei-kun,ZHU Cai-hua,et al.Short-term passenger flow forecast of urban rail transit based on different time granularities[J].Journal of Chang'an University(Natural Science Edition),2020,40(3):75-83.
[4]MILENKOVIC M,VADLENKA L,MELICHAR V,et al.SARIMA modelling approach for railway passenger flow forecasting[J].Transport,2018,33(5):1113-1120.
[5]马超群,李培坤,朱才华,等.基于不同时间粒度的城市轨道交通短时客流预测[J].长安大学学报(自然科学版),2020,40(3):75-83.
MA Chao-qun,LI Pei-kun,ZHU Cai-hua,et al.Short-term passenger flow forecast of urban rail transit based on different time granularities[J].Journal of Chang'an University(Natural Science Edition),2020,40(3):75-83.
[6]李得伟,颜艺星,曾险峰.城市轨道交通进站客流量短时组合预测模型[J].都市快轨交通,2017,30(1):54-58,64.
LI De-wei,YAN Yi-xing,ZENG Xian-feng.Combined short-term prediction model of station entry flow in urban rail transit[J].Urban Rapid Rail Transit,2017,30(1):54-58,64.
[7]WILLIAMS B M,HOEL L A.Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:Theoretical basis and empirical results[J].Journal of Transportation Engineering,2003,129(6):664-672.
[8]SUN P,ALJERI N,BOUKERCHE A.Machine learning-based models for real-time traffic flow prediction in vehicular networks[J].IEEE Network,2020,34(3):178-185.
[9]王 莹,韩宝明,张 琦,等.基于SARIMA模型的北京地铁进站客流量预测[J].交通运输系统工程与信息,2015,15(6):205-211.
WANG Ying,HAN Bao-ming,ZHANG Qi,et al.Forecasting of entering passenger flow volume in Beijing subway based on SARIMA model[J].Journal of Transportation Systems Engineering and Information Technology,2015,15(6):205-211.
[10]孙晓黎,马超群,朱才华.基于XGBoost的轨道交通短时客流预测精度分析[J].交通科技与经济,2021,23(1):54-58.
SUN Xiao-li,MA Chao-qun,ZHU Cai-hua.XGBoost-based analysis of prediction accuracy for short-term passenger flow in rail transit[J].Technology and Economy in Areas of Communications,2021,23(1):54-58.
[11]ZHAO Y Y,REN L,MA Z L,et al.Novel three-stage framework for prioritizing and selecting feature variables for short-term metro passenger flow prediction[J].Transportation Research Record,2020(2674):192-205.
[12]KANG L L,HU G J,HUANG H,et al.Urban traffic travel time short-term prediction model based on spatio-temporal feature extraction[J].Journal of Advanced Transportation,2020,2020:3247847.
[13]VAN LINT J W C,VAN HINSBERGEN C.Short-term traffic and travel time prediction models[J].Artificial Intelligence Applications to Critical Transportation Issues,2012,22(1):22-41.
[14]CHAN K Y,DILLON T S,SINGH J,et al.Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm[J].IEEE Transactions on Intelligent Transportation Systems,2011,13(2):644-654.
[15]ZHENG W Z,LEE D H,SHI Q X.Short-term freeway traffic flow prediction:Bayesian combined neural network approach[J].Journal of Transportation Engineering,2006,132(2):114-121.
[16]MA X L,ZHANG J Y,DU B W,et al.Parallel architecture of convolutional bi-directional LSTM neural networks for network-wide metro ridership prediction[J].IEEE Transactions on Intelligent Transportation Systems,2018,20(6):2278-2288.
[17]HAO S Y,LEE D H,ZHAO D.Sequence to sequence learning with attention mechanism for short-term passenger flow prediction in large-scale metro system[J].Transportation Research Part C:Emerging Technologies,2019,107:287-300.
[18]谢昊阳.基于图卷积网络的城市轨道交通多站点客流预测研究[D].兰州:兰州交通大学,2023.
XIE Hao-yang.Research on multi-station passenger flow forecast of urban rail transit based on graph-convolution network[D].Lanzhou:Lanzhou Jiatong University,2023.
[19]孙凤美.基于图注意力神经网络的地铁短时客流量预测[D].大连:大连海事大学,2023.
SUN Feng-mei.Short-term passenger flow forecast of subway based on graph attention neural network[D].Dalian:Dalian Maritime University,2023.
[20]WU Z H,PAN S R,CHEN F W,et al.A comprehensive survey on graph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):4-24.
[21]YU B,YIN H T,ZHU Z X,et al.Spatio-temporal graph convolutional networks[C]//ACM.Proceedings of the 27th International Joint Conference on Artificial Intelligence.Stockholm:ACM,2018:3634-3640.
[22]刘晓磊,段征宇,余 庆,等.基于图卷积循环神经网络的城市轨道客流预测[J].华南理工大学学报(自然科学版),2022,50(3):21-27.
LIU Xiao-lei,DUAN Zheng-yu,YU Qing,et al.Passenger flow forecast of urban rail transit based on graph convolution and recurrent neural network[J].Journal of South China University of Technology(Natural Science Edition),2022,50(3):21-27.
[23]ILBEIGI M,ASHURI B,JOUKAR A.Time-series analysis for forecasting asphalt-cement price[J].Journal of Management in Engineering,2017,33(1):04016030.
[24]ZHOU H Y,ZHANG S H,PENG J Q,et al.Informer:Beyond efficient transformer for long sequence time-series forecasting[C]//Assoc Advancement Artificial Intelligence.Proceedings of the AAAI-21 Technical Tracks 12.Los Angeles:Assoc Advancement Artificial Intelligence,2021:11106-11115.
[25]WU H X,HU T G,LIU Y,et al.TimesNet:Temporal 2D-variation modeling for general time series analysis[EB/OL].(2022-10-05)[2025-03-05].https://arxiv.org/abs/2210.02186v3.

相似文献/References:

[1]王建伟,李娉,高洁,等.中国交通运输碳减排区域划分[J].长安大学学报(自然科学版),2012,32(01):0.
[2]李曙光,周庆华.具有破坏排队的离散时间动态网络装载算法[J].长安大学学报(自然科学版),2012,32(01):0.
[3]凌海兰,郗恩崇.基于随机波动条件的公交客运量预测模型[J].长安大学学报(自然科学版),2012,32(01):0.
[4]田娥,肖庆,陆小佳,等.安全驾驶的横向安全预警报警阈值的确定[J].长安大学学报(自然科学版),2012,32(01):0.
[5]侯贻栋,赵炜华,魏 朗,等.驾驶人空间距离判识规律心理学分析[J].长安大学学报(自然科学版),2012,32(03):86.
 HOU Yi-dong,ZHAO Wei-hua,WEI Lang,et al.Analysis on psychology in cognitive distance about drivers[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):86.
[6]赵跃峰,张生瑞,魏 华.隧道群路段运行速度特性分析[J].长安大学学报(自然科学版),2012,32(06):67.
 ZHAO Yue-feng,ZHANG Sheng-rui,WEI hua.Operating speed characteristics of tunnel group section[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):67.
[7]林 杉,许宏科,刘占文.一种高速公路隧道交通流元胞自动机模型[J].长安大学学报(自然科学版),2012,32(06):73.
 LIN Shan,XU Hong-ke,LIU Zhan-wen.One cellular automaton traffic flow model for expressway tunnel[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):73.
[8]刘俊德,徐 兵,梁永东,等.交通事故下高速公路行车安全评估[J].长安大学学报(自然科学版),2012,32(06):78.
 LIU Jun-de,XU bing,LIANG Yong-dong,et al.Traffic safety assessment of expressway in the accident[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):78.
[9]芮海田,吴群琪,赵跃峰,等.公路建设对区域经济发展的影响分析——以陕西省为例[J].长安大学学报(自然科学版),2012,32(06):83.
 RUI Hai-tian,WU Qun-qi,ZHAO Yue-feng,et al.Influence of highway construction on regional economy development——taking Shaanxi as an example[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):83.
[10]彭 辉,续宗芳,韩永启,等.城市群城际运输结构配置客流分担率模型[J].长安大学学报(自然科学版),2012,32(02):91.
 PENG Hui,XU Zong-fang,HAN Yong-qi,et al.Sharing ratios model of passenger flows in intercity transportation structure configuration among urban agglomeration[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):91.
[11]王玉萍,陈宽民,杨富社,等.城市轨道交通客流预测结果的技术分析体系[J].长安大学学报(自然科学版),2011,31(03):72.
 WANG Yu-ping,CHEN Kuan-min,YANG Fu-she,et al.Analysis system of urban rail transit passenger flow forecast result[J].Journal of Chang’an University (Natural Science Edition),2011,31(2):72.

备注/Memo

备注/Memo:
收稿日期:2024-08-18
基金项目:北京市自然科学基金项目(L241079)
作者简介:钱汉强(1997-),男,北京市人,工学博士研究生,E-mail:qianhq@emails.bjut.edu.cn。
通信作者:陈艳艳(1970-),女,河南郑州人,教授,博士研究生导师,E-mail:cdyan@bjut.edu.cn。
更新日期/Last Update: 2025-04-01