[1]袁华智,陈明杰,赵 坤,等.斜坡条件下土压力对排桩基础水平承载特性影响[J].长安大学学报(自然科学版),2025,45(2):126-135.[doi:10.19721/j.cnki.1671-8879.2025.02.011]
 YUAN Hua-zhi,CHEN Ming-jie,ZHAO Kun,et al.Impact of soil pressure on horizontal load-bearing properties of row piles basis under slope conditions[J].Journal of Chang’an University (Natural Science Edition),2025,45(2):126-135.[doi:10.19721/j.cnki.1671-8879.2025.02.011]
点击复制

斜坡条件下土压力对排桩基础水平承载特性影响()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年2期
页码:
126-135
栏目:
桥梁与隧道工程
出版日期:
2025-03-31

文章信息/Info

Title:
Impact of soil pressure on horizontal load-bearing properties of row piles basis under slope conditions
文章编号:
1671-8879(2025)02-0126-10
作者:
袁华智123陈明杰1赵 坤1李旭升1王正振123韦正德123曹 铭4
(1. 兰州理工大学 土木工程学院,甘肃 兰州 730050; 2. 兰州理工大学 西部土木工程防灾减灾教育部工程研究中心,甘肃 兰州 730050; 3. 兰州理工大学 甘肃省土木工程防灾减灾重点实验室,甘肃 兰州 730050; 4. 庆阳职业技术学院 智能工程系,甘肃 庆阳 745000)
Author(s):
YUAN Hua-zhi123 CHEN Ming-jie1 ZHAO Kun1 LI Xu-sheng1 WANG Zheng-zhen123WEI Zheng-de123 CAO Ming4
关键词:
桥梁工程 排桩基础 数值模拟 土压力 水平承载力 斜坡条件
Keywords:
bridge engineering row piles basis numerical simulation soil pressure horizontal load-bearing capacity slope condition
DOI:
10.19721/j.cnki.1671-8879.2025.02.011
文献标志码:
A
摘要:
基于物理相似原理,依据实际工程,开发等比缩放(1:80)室内试验场景,分析斜坡条件下土压力对排桩基础水平承载力的影响。根据弹塑性理论和摩尔-库伦准则,采用主-从接触算法设定边界条件,选取自适应划分网格的方法,建立排桩基础与周围土体相互作用的有限元模型,对等比缩放室内试验进行验证,并分析斜坡倾角、嵌固深度及桩间距对排桩水平承载能力的影响。研究结果表明:当斜坡倾角从30°增加到60°时,桩水平承载力从2.68 kPa增加到3.18 kPa; 当嵌固深度从0增加到300 mm时,桩水平承载力从0增加到3.18 kPa; 当桩间距从150 mm增至210 mm时,桩身最大弯矩由0.28 N·m增加至0.34 N·m,最大弯矩由距桩顶78 mm处向距桩顶116 mm处移动; 当桩身嵌固深度为300 mm、斜坡倾角为60°时,桩身弯矩达到最大值0.65 N·m; 随着斜坡倾角的增大,桩的水平承载能力降低,桩身稳定性下降; 当嵌固深度较大时,深层土体的水平承载力得到有效利用,桩身稳定性增强; 排桩的水平承载力与桩间距成反比,随着桩间距增大,相邻桩之间的相互作用下降,适当减少桩间距可以有效提高排桩整体承载力。
Abstract:
Based on the principle of physical similarity and the actual project, the indoor test scene was developed as the equal-scale was 1:80, and the influence of soil pressure on the horizontal bearing capacity of row piles basis under slope condition was analyzed. According to the elastoplastic theory and Mohr-Coulomb criterion, the master-slave contact algorithm was used to set the boundary condition, the method of adaptive meshing was selected, the finite element model of mutual interaction between the row piles basis and the surrounding soil was established. The equal-scale indoor test was verified, and the influences of slope angle, embedded depth and pile spacing on the horizontal load-bearing capacity of row piles were analyzed. The results show that when the slope angle increases from 30° to 60°, the horizontal load-bearing capacity of the pile increases from 2.68 kPa to 3.18 kPa. When the embedded depth increases from 0 to 300 mm, the horizontal load-bearing capacity of the pile increases from 0 to 3.18 kPa. When the pile spacing increases from 150 to 210 mm, the maximum pile bending moment increases from 0.28 N·m to 0.34 N·m. The maximum pile bending moment moves from the point which is 78 mm to the top pile to the other point which is 116 mm to the top pile. When the embedded depth is 300 mm and the slope angle is 60°, the pile bending moment of the pile reaches the maximum value of 0.65 N·m. With the increasing of slope angle, the horizontal load-bearing capacity of pile decreases and the stability decreases. When the embedded depth is larger, the horizontal load-bearing capacity of deep soil is effectively utilized, and the stability enhances. The horizontal load-bearing capacity of row piles are inversely proportional to the pile spacing. With the increasing of pile spacing, the interaction between adjacent piles decreases. The appropriate reduction of pile spacing can effectively improve the overall load-bearing capacity of row piles.4 tabs, 14 figs, 26 refs.

参考文献/References:

[1] FAN H,LIANG R.Importance sampling based algorithm for efficient reliability analysis of axially loaded piles[J].Computers and Geotechnics,2015,65:278-284.
[2]KLAMMLER H,MCVAY M,HERRERA R,et al.Reliability based design of driven pile groups using combination of pile driving equations and high strain dynamic pile monitoring[J].Structural Safety,2013,45:10-17.
[3]CHAN C L,LOW B K.Probabilistic analysis of laterally loaded piles using response surface and neural network approaches[J].Computers and Geotechnics,2012,43:101-110.
[4]陈继彬,赵其华,彭社琴.碎石土斜坡土体水平抗力分布规律研究[J].工程地质学报,2018,26(4):959-968.
CHEN Ji-bin,ZHAO Qi-hua,PENG She-qin.Studay on horizontal resistance distribution of gravel soil slope[J].Journal of Engineering Geology,2018,26(4):959-968.
[5]赵明华,尹平保,杨明辉,等.高陡斜坡上桥梁桩基受力特性及影响因素分析[J].中南大学学报(自然科学版),2012,43(7):2733-2739.
ZHAO Ming-hua,YIN Ping-bao,YANG Ming-hui,et al.Analysis of influence factors and mechanical characteristics of bridge piles in high and steep slopes[J].Journal of Central South University(Science and Technology),2012,43(7):2733-2739.
[6]尹平保,聂道流,杨朝晖,等.斜坡基桩p-y曲线及水平承载计算方法研究[J].岩石力学与工程学报,2018,37(4):996-1003.
YIN Ping-bao,NIE Dao-liu,YANG Zhao-hui,et al.The p-y curve and computation method of the horizontal bearing capacity of piles in sloping ground[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(4):996-1003.
[7]宁夏元,尹平保,赵 衡.山区斜坡段桥梁基桩屈曲稳定性分析[J].中南大学学报(自然科学版),2015,46(10):3752-3757.
NING Xia-yuan,YIN Ping-bao,ZHAO Heng.Buckling analysis of bridge piles in mountain slopes[J].Journal of Central South University(Science and Technology),2015,46(10):3752-3757.
[8]赵学亮,张景斐,黄 钺,等.嵌岩桩水平承载力计算方法的分析比较[J].江苏大学学报(自然科学版),2023,44(3):359-366.
ZHAO Xue-liang,ZHANG Jing-fei,HUANG Yue,et al.Analysis and comparison of approaches for determining horizontal bearing capacity of rock-socketed pile[J].Journal of Jiangsu University(Natural Science Edition),2023,44(3):359-366.
[9]SANCTIS L D,LAORA R D,MAIORANO R M S,et al.Failure envelopes of pile groups under combined axial-moment loading:Theoretical background and experimental evidence[J].Soils and Foundations,2021,61(5):1419-1430.
[10]GEORGIADIS K,GEORGIADIS M.Development of p-y curves for undrained response of piles near slopes[J].Computers and Geotechnics,2012,40:53-61.
[11]SIVAPRIYA S,GANDHI S.Experimental and numerical study on pile behaviour under lateral load in clayey slope[J].Indian Geotechnical Journal,2013,43(1):105-114.
[12]UTTAM K,SANDEEP V.A numerical analysis on the effect of pile head connections on piled raft foundation subjected to vertical and static horizontal load[J].Materials Today:Proceedings,2021,42(5):3083-3088.
[13]PENG W Z,ZHAO M H,ZHAO H,et al.A two-pile foundation model in sloping ground by finite beam element method[J].Computers and Geotechnics,2020,122:103503.
[14]龚先兵,杨明辉,赵明华,等.山区高陡横坡段桥梁桩基承载机理模型试验[J].中国公路学报,2013,26(2):56-62.
GONG Xian-bing,YANG Ming-hui,ZHAO Ming-hua,et al.Load-bearing mechanism model test for bridge pile foundation in hugh-steep transverse slope[J].China Journal of Highway and Transport,2013,26(2):56-62.
[15]程刘勇,许锡昌,陈善雄,等.斜坡基桩水平极限承载力及影响因素模型试验和数值模拟[J].岩土力学,2014,35(9):2685-2691.
CHENG Liu-yong,XU Xi-chang,CHEN Shan-xiong,et al.Model test and numerical simulation of horizontal bearing capacity and impact factors for foundation piles in slope[J].Rock and Soil Mechanics,2014,35(9):2685-2691.
[16]文松霖,胡胜刚,胡汉兵,等.渠坡上基桩的水平承载机制试验研究[J].岩土力学,2010,31(6):1786-1790.
WEN Song-lin,HU Sheng-gang,HU Han-bing,et al.Test sduty of horizontal bearing mechanism of pile on canal slope[J].Rock and Soil Mechanics,2010,31(6):1786-1790.
[17]SUN Z J,WANG Q,MING R,et al.Sensitivity analysis of influencing factors of pile foundation stability based on field experiment[J].Structures,2023,54:14-22.
[18]杨明辉,朱刘山,罗 宏,等.坡地条件下水平受荷单桩p-y曲线法试验与数值模拟[J].公路交通科技,2017,34(8):83-90.
YANG Ming-hui,ZHU Liu-shan,LUO Hong,et al.Experiment and numerical simulation of p-y curve method for laterally loaded single pile in sloping ground[J].Journal of Highway and Transportation Research and Development,2017,34(8):83-90.
[19]马天忠,孙晨东,高玉广,等.湿陷性黄土场地双向螺旋挤土灌注桩成孔挤密效应与极限承载力试验研究[J].建筑科学与工程学报,2022,39(5):241-250.
MA Tian-zhong,SUN Chen-dong,GAO Yu-guang,et al.Test research on soil compaction effect and ultimate bearing capacity of bidirectional soil displacement screw piles in collapsible loess site[J].Journal of Architecture and Civil Engineering,2022,39(5):241-250.
[20]孔纲强,于江华,任连伟,等.微型钢管桩加固既有基础变形特性现场试验[J].建筑科学与工程学报,2022,39(5):222-231.
KONG Gang-qiang,YU Jiang-hua,REN Lian-wei,et al.Field test on deformation characteristics of existing foundation reinforced by micro steel pipe pile[J].Journal of Architecture and Civil Engineering,2022,39(5):222-231.
[21]ZHANG Y K,WANG Y S,LI D Y,et al.Bearing capacity and soil deformation around modified suction caisson in clay under monotonic horizontal loading[J].Marine Georesources Geotechnology,2023,41(9):959-968.
[22]CHEN G S,YANG C,ZHAO Y,et al.Upper-bound solution of the horizontal bearing capacity of a composite bucket shallow foundation in sand[J].Ships and Offshore Structures,2023,18(S1):79-91.
[23]ZOU X J,CHEN S,HU J F,et al.Capacity of monopile-bucket composite foundations in sand-overlaying-clay deposits under lateral loading[J].Ocean Engineering 2024,304:117849.
[24]周 珩,苏 谦,姚裕春,等.双排桩基悬臂式挡土墙结构计算方法研究[J].铁道科学与工程学报,2019,16(3):654-663.
ZHOU Heng,SU Qian,YAO Yu-chun,et al.Research on calculation method of double-row pile foundation cantilever retaining wall structure[J].Journal of Railway Science and Engineering,2019,16(3):654-663.
[25]薛德敏,李天斌,张 帅.基于位移控制的双排桩桩后滑坡推力计算方法[J].岩土工程学报,2023,45(9):1979-1986.
XUE De-min,LI Tian-bin,ZHANG Shuai.Method for calculating landslide thrusts behind double-row piles based on displacement control[J].Chinese Journal of Geotechnical Engineering,2023,45(9):1979-1986.
[26]单玉麟,黄福云,周桂吉,等.考虑台后不平衡土压力下整体桥H型钢桩基-土相互作用内力计算方法[J].建筑科学与工程学报,2022,39(1):125-133.
SHAN Yu-lin,HUANG Fu-yun,ZHOU Gui-ji,et al.Internal force calculation method of soil-steel H-pile considering unbalanced earth pressure of backfill behind abutment in integral abutment jointless bridges[J].Journal of Architecture and Civil Engineering,2022,39(1):125-133.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):44.

备注/Memo

备注/Memo:
收稿日期:2024-08-20
基金项目:国家自然科学基金项目(52368055); 兰州理工大学红柳优秀青年人才支持计划项目; 甘肃省高校教师创新基金项目(2025B-534)
作者简介:袁华智(1982-),男,江苏泰州人,副教授,工学博士,E-mail:yuanhz@lut.edu.cn。
通信作者:王正振(1989-),男,甘肃白银人,副教授,工学博士,E-mail:wangzz@lut.edu.cn。
更新日期/Last Update: 2025-04-01