[1]齐洪亮,王 杰,罗文俊,等.清水条件下环形石笼减小桥墩局部冲刷的机理[J].长安大学学报(自然科学版),2025,45(2):96-110.[doi:10.19721/j.cnki.1671-8879.2025.02.009]
 QI Hong-liang,WANG Jie,LUO Wen-jun,et al.Mechanism of local scour reduction around pier using circular gabions in clear water[J].Journal of Chang’an University (Natural Science Edition),2025,45(2):96-110.[doi:10.19721/j.cnki.1671-8879.2025.02.009]
点击复制

清水条件下环形石笼减小桥墩局部冲刷的机理()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年2期
页码:
96-110
栏目:
桥梁与隧道工程
出版日期:
2025-03-31

文章信息/Info

Title:
Mechanism of local scour reduction around pier using circular gabions in clear water
文章编号:
1671-8879(2025)02-0096-15
作者:
齐洪亮1王 杰2罗文俊3田伟平1李家春1
(1. 长安大学 特殊地区公路工程教育部重点实验室,陕西 西安 710064; 2. 安徽新视野门窗幕墙工程有限公司,安徽 合肥 230000; 3. 中国市政工程西南设计研究总院有限公司,四川 成都 610000)
Author(s):
QI Hong-liang1 WANG Jie2 LUO Wen-jun3 TIAN Wei-ping1 LI Jia-chun1
(1. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University,Xi'an 710064, Shaanxi, China; 2. Anhui New Vision Window Curtain Wall Engineering Co. Ltd.,Hefei 230000, Anhui, China; 3. China Municipal Engineering Southwest Design Research Institute Co. Ltd., Chengdu 610000, Sichuan, China)
关键词:
桥梁工程 环形石笼 模型试验 数值模拟 局部冲刷
Keywords:
bridge engineering circular gabion model test numerical simulation local scour
分类号:
U447
DOI:
10.19721/j.cnki.1671-8879.2025.02.009
文献标志码:
A
摘要:
针对桥墩的局部冲刷防护,提出一种环形石笼减冲措施,通过室内模型试验和数值模拟相结合的方法,研究石笼填充碎石粒径、石笼直径对石笼减小桥墩局部冲刷特征的影响规律及减冲机理。利用计算流体力学(CFD)软件Fluent,对环形石笼周围流速场特征及河床切应力特征进行数值模拟。研究结果表明:环形石笼可以有效减小桥墩局部冲刷; 当环形石笼防护范围一定时,局部冲刷深度随填充碎石粒径的增大呈先减小后增大的趋势,当粒径为D/24~7D/120(D为桥墩直径)时,减冲效果最好,减冲率为54.9%; 在最佳粒径的条件下,局部冲刷深度随石笼直径的增大呈先减小后增大的趋势,当直径为D/5时,减冲效果最好,减冲率为56.1%; 与无防护相比,实体护圈的减冲效果明显,减冲率可达47.6%; 最大局部冲刷深度与桥墩中心的距离由无防护工况的0.69D增加到1.43D; 与实体护圈相比,填充碎石粒径为D/24~7D/120时,石笼的减冲率最大可达54.9%; 最大冲刷深度与桥墩中心的距离可达1.84D; 当石笼直径为D/5时,其减冲效果最佳,最大减冲率可达56.1%; 最大冲刷深度与桥墩中心的距离为1.68D; 石笼的透水性使两侧绕流流速明显减小,石笼内外部压差使石笼内部流场复杂,使桥墩附近河床表面附近流场及切应力显著减小,起到了减冲作用。
Abstract:
To address local scour protection around bridge piers, a circular gabion anti-scour measure was proposed. Through combined physical model tests and numerical simulations, the influences of gravel particle size and gabion diameter on local scour reduction characteristics and underlying mechanisms were investigated. The computational fluid dynamics(CFD)software was employed to simulate the flow field characteristics and bed shear stress distribution around circular gabions. The results show that circular gabions effectively mitigate the local scour around piers. When the gabion protection range remains constant, the maximum scour depth initially decreases then increases with the gravel particle size, achieving an optimal scour reduction(54.9% reduction rate)at a particle size of D/24-7D/120(where D represents pier diameter). Under optimal particle size conditions, the scour depth first decreases then increases with the gabion diameter, reaching themaximum effectiveness(56.1% reduction rate)at a gabion diameter of D/5 particle size. Compared with unprotected conditions, solid collars provide 47.6% scour reduction. The distance from pier center to the maximum scour depth increases from 0.69D(unprotected)to 1.43D when using solid collars. Compared with solid collars, gabions with a particle size of D/24-7D/120 achieve 54.9% scour reduction with the maximum scour depth occurring at 1.84D from pier center. When the gabion diameter reaches D/5, the maximum scour reduction reaches 56.1% with the maximum scour depth located 1.68D from pier center. The gabion's permeability significantly reduces lateral flow velocities, while pressure differentials between internal and external flows create complex internal flow patterns, effectively reducing near-bed flow velocities and shear stresses around the pier, which plays a main role in the local scour reduction.1 tab, 22 figs, 25 refs.

参考文献/References:

[1] 喻 鹏,祝志文.串列双圆柱桥墩局部冲刷精细化模拟[J].中国公路学报,2019,32(1):107-116.
YU Peng,ZHU Zhi-wen.Refined simulation for local scour around cylinder piers in tandem[J].China Journal of Highway and Transport,2019,32(1):107-116.
[2]熊 文,蔡春声,张嵘钊.桥梁水毁研究综述[J].中国公路学报,2021,34(11):10-28.
XIONG Wen,CAI Chun-sheng,ZHANG Rong-zhao.Review of hydraulic bridge failures[J].China Journal of Highway and Transport,2021,34(11):10-28.
[3]张晨光.山区顺直河道纵向桥墩局部冲刷试验研究[D].西安:长安大学,2021.
ZHANG Chen-guang.Experimental study on local scouring depth of longitudinal bridges piers in straight channel in mountainous areas[D].Xi'an:Chang'an University,2021.
[4]王顺意,牟 力,魏 凯,等.不同水力条件下圆柱桥墩局部冲刷试验研究[J].防灾减灾工程学报,2020,40(3):425-431.
WANG Shun-yi,Mou Li,WEI Kai,et al.Experimental study on local scour of cylindrical pier under different hydraulic conditions[J].Journal of Disaster Prevention and Mitigation Engineering,2020,40(3):425-431.
[5]田伟平,李惠萍,高冬光.沿河路基冲刷机理与冲刷深度[J].长安大学学报(自然科学版),2002,22(4):39-42.
TIAN Wei-ping,LI Hui-ping,GAO Dong-guang.Scour depth and mechanism of highway subgrade along river[J].Journal of Chang'an University(Natural Science Edition),2002,22(4):39-42.
[6]WU P,BALACHANDAR R,SUI J Y.Local scour around bridge piers under ice-covered conditions[J].Journal of Hydraulic Engineering,2016,142(1):55-59.
[7]YANG Y F,BRUCE W M,GRAHAM H M,et al.Temporal evolution of clear-water local scour at aligned and skewed complex bridge piers[J].Journal of Hydraulic Engineering,2020,146(4):77-83.
[8]MURTAZA G,HASHMI H N,NAEEM U A,et al.Effect of bridge pier shape on scour depth at uniform single bridge pier[J].Mehran University Research Journal of Engineering and Technology,2018,37(3):3-8.
[9]齐洪亮,袁天刚,田伟平,等.顺直河道双桥墩纵向桥段流场过剩切应力特征数值模拟[J].长安大学学报(自然科学版),2021,41(4):32-42.
QI Hong-liang,YUAN Tian-gang,TIAN Wei-ping,et al.Modeling of excess shear stress around two columns of tandem piers of longitudinal bridge[J].Journal of Chang'an University(Natural Science Edition),2021,41(4):32-42.
[10]王 飞,张 彬,齐剑峰.桥墩局部冲刷发展过程的三维动网格模拟[J].南水北调与水利科技,2017,15(2):132-137.
WANG Fei,ZHANG Bin,QI Jian-feng.3D numerical investigation of bridge pier-scour development using a dynamic-mesh updating technique[J].South-to-North Water Transfers and Water Science & Technology,2017,15(2):132-137.
[11]MERGILI M,FISCHER J T,KRENN J,et al.An advanced open-source computational framework for the propagation and interaction of two-phase mass flows[J].Geoscientific Model Development,2017,10(2):155-164.
[12]BAYKAL C,SUMER B M,FUHRMAN D R,et al.Numerical investigation of flow and scour around a vertical circular cylinder[J].Philosophical Transactions:Series A,Mathematical,Physical,and Engineering Sciences,2015,373(2033):103-110.
[13]ZHENG H C,SHI Z M,PENG M,et al.Coupled CFD-DEM model for the direct numerical simulation of sediment bed erosion by viscous shear flow[J].Engineering Geology,2018,245:245-252.
[14]WANG C,LIANG F,YU X.Experimental and numerical investigations on the performance of sacrificial piles in reducing local scour around pile groups[J].Natural Hazards,2016,85(3):1417-1435.
[15]QI H L,TIAN W P,ZHANG H C.Modeling local scour around a cylindrical pier with circular collar with tilt angles(counterclockwise around the direction of the channel cross-section)in clear-water[J].Water,2021,13(22):289-297.
[16]肖苡辀,潘桂林,冯先导.护圈对桥墩局部冲刷影响的数值模拟研究[J].中国港湾建设,2020,40(11):18-21.
XAIO Yi-zhou ,PAN Gui-lin,FENG Xian-dao.Numerical simulation of the influence of retainer on local scour around bridge piers[J].China Harbour Engineering,2020,40(11):18-21.
[17]魏月梅,陈 丹.水流攻击角影响群桩桥墩周围局部冲刷护圈防护效果研究[J].南通航运职业技术学院学报,2017,16(4):64-66,106.
WEI Yue-mei,CHEN Dan.Study on protective effect of water flow attack angle on local scour guard ring around pile bridge piers[J].Journal of Nantong Vocational & Technical Shipping College,2017,16(4):64-66,106.
[18]YOON T H.Wire gabion for protecting bridge piers[J].Journal of Hydraulic Engineerings,2005,131(11):942-949.
[19]TOM C,SHATIRAH A.Reducing bridge pier scour using gabion mattresses filled with recycled and alternative materials[J].Eng,2020,1(2):452-462.
[20]MELVILLE B W,RAUDKIVI A J. Flow characteristics in local scour at bridge piers[J].Journal of Hydraulic Research,2010,15(4):823-831.
[21]房世龙,陈 红,施小飞.桥墩清水局部冲刷减速不冲防护技术试验研究[J].重庆交通大学学报(自然科学版),2016,35(3):71-77.
FANG Shi-long,CHEN Hong,SHI Xiao-fei.Experimental study on protection effect of flow-altering countermeasures against clear water scour at bridge piers[J].Journal of Chongqing Jiaotong University(Natural Science),2016,35(3):71-77.
[22]王顺意.水流作用下圆柱桥墩局部冲刷特性与防护措施研究[D].成都:西南交通大学,2020.
WANG Shun-yi.Study on local scour characteristics and protective measures of cylindrical pier under the action of water flow[D].Chengdu:Southwest Jiaotong University,2020.
[23]刘 昂,田 璐.局部冰塞体尺寸对桥墩绕流和冲刷的影响[J].公路交通科技,2022,39(11):84-94,150.
LIU Ang,TIAN Lu.Influence of size of local ice jam on flow and scour around bridge piers[J].Journal of Highway and Transportation Research and Development,2022,39(11):84-94,150.
[24]ROULUND A,SUMER B M,FREDSØE J,et al.Numerical and experimental investigation of flow and scour around a circular pile[J].Journal of Fluid Mechanics,2005,534:351-401.
[25]姜 铎.琴键堰倒悬比参数优化及下游冲刷形态数值模拟研究[D].西安:西安理工大学,2020:755-772.
JIANG Duo.Study on parameter optimization of piano key weir upside down ratio and numerical simulation of downstream scour[D].Xi'an:Xi'an University of Technology,2020.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):44.

备注/Memo

备注/Memo:
收稿日期:2024-09-20
基金项目:中央高校基本科研业务费专项资金项目(300102213208); 国家自然科学基金项目(51708043); 陕西省自然科学基础研究计划项目(2019JQ-680); 国家重点研发计划项目(2022YFC3002600); 交通运输部在役干线公路基础设施与安全应急数字化试点项目(303)
作者简介:齐洪亮(1982-),男,陕西宝鸡人,副教授,工学博士,E-mail:qihongl@126.com。
更新日期/Last Update: 2025-04-01