[1]贾兴利,肖 展,郭军恒,等.基于粒子群优化的公路路线走廊带智能优选方法[J].长安大学学报(自然科学版),2025,45(2):14-23.[doi:10.19721/j.cnki.1671-8879.2025.02.002]
 JIA Xing-li,XIAO Zhan,GUO Jun-heng,et al.Intelligent optimization method for highway route corridor belt based on particle swarm optimization[J].Journal of Chang’an University (Natural Science Edition),2025,45(2):14-23.[doi:10.19721/j.cnki.1671-8879.2025.02.002]
点击复制

基于粒子群优化的公路路线走廊带智能优选方法()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年2期
页码:
14-23
栏目:
道路工程
出版日期:
2025-03-31

文章信息/Info

Title:
Intelligent optimization method for highway route corridor belt based on particle swarm optimization
文章编号:
1671-8879(2025)02-0014-10
作者:
贾兴利肖 展郭军恒付玉佳邓 豫
(长安大学 公路学院,陕西 西安 710064)
Author(s):
JIA Xing-li XIAO Zhan GUO Jun-heng FU Yu-jia DENG Yu
(School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
道路工程 路线走廊带 智能选线 粒子群优化 适应度函数
Keywords:
road engineering route corridor belt intelligent route selection particle swarm optimization fitness function
分类号:
U412.3
DOI:
10.19721/j.cnki.1671-8879.2025.02.002
文献标志码:
A
摘要:
为提升公路路线走廊带的多目标决策效率,探究耦合约束下路线空间位置自动更新机制。首先,以粒子群算法理论为基础,界定面向公路路线走廊带空间曲线特性的相对空间位置内涵,提出相对空间位置的分阶段-再分配动态更新方法,构建基于粒子群优化的公路路线走廊带智能优选模型; 其次,筛选并建立包含地形、地质、水文、环境及占地的公路选线约束因子体系,考虑路线与约束因子间相互作用关系,分别求解地形适应度和费用适应度的函数表达,提出公路路线走廊带智能优选流程; 最后,以河谷区高速公路工程为例,开展公路路线方案智能生成和结果分析。研究结果表明:经过20次迭代后适应度出现显著下降,并在迭代至2 000代后保持稳定,通过设置相对空间位置实现了路线段点的方向更新,转换后的单元位置寻优可以有效解决粒子群算法趋于局部空间搜索的问题; 优化后的选线方法表现出对地形函数的高适应度,并可有效降低工程经济费用; 分阶段-再分配的位置更新方法可提高模型寻优能力,地形适应度较未进行再分配的路线方案提高了1.2%,工程经济费用降低了38.4%; 与人工方案相比,优化方案的工程费用降低了9.22%。综上所述,基于粒子群优化的公路路线走廊带智能优选方法可兼顾地形与工程经济费用,为人工选线提供重要参考。
Abstract:
To improve the efficiency of multi-objective decision-making for highway route corridor belt, the automatic updating mechanism of route spatial position under coupling constraints was explored. Firstly, based on the theory of particle swarm optimization(PSO), the connotation of relative spatial position oriented to the spatial curve characteristics of highway route corridor belt was defined. The staged-reallocation dynamic updating method of relative spatial position was proposed. The intelligent optimization method for highway route corridor belt was constructed based on PSO. Secondly, the highway route selection constraint factor system including topography, geology, hydrology, environment and land occupation was screened and established. Considering the interaction between route and constraint factors, the function expressions of topography fitness and cost fitness were solved, respectively, and the intelligent optimization process for highway route corridor belt was proposed. Finally, taking the river valley expressway project as an example, the intelligent generation and result analysis of the highway route scheme were carried out. The research results show that the fitness decreases significantly after 20 iterations, and remains stable after 2 000 iterations. The direction of route intersection points is updated by setting the relative spatial position, and the converted element position optimization can effectively solve the problem that the PSO tend to search in local space. The optimized route selection method shows a high fitness to the topography function and can effectively reduce the economic cost of the project. The staged-reallocation position updating method can improve the optimization ability of the model. Compared with the route scheme without reallocation, thetopography fitness increases by 1.2%, and the economic cost of the project reduces by 38.4%. Compared with the manual scheme, the cost of the optimized scheme decreases by 9.22%. The intelligent optimization method for highway route corridor belt based on PSO can balance the topography and economic cost of project, providing an important reference for manual route selection. 2 tabs, 6 figs, 28 refs.

参考文献/References:

[1] 薛新功,李 伟,蒲 浩.铁路线路智能优化方法研究综述[J].铁道学报,2018,40(3):6-15.
XUE Xin-gong,LI Wei,PU Hao.Research review of intelligent optimization methods of railway alignment[J].Journal of the China Railway Society,2018,40(3):6-15.
[2]韩春华.基于GIS的铁路选线系统智能环境建模方法研究[D].成都:西南交通大学,2009.
HAN Chun-hua.Research on intelligent environment modeling method of railway line selectionsystem based on GIS[D].Chengdu:Southwest Jiaotong University,2009.
[3]袁 泉,曾文驱,李子涵.基于改进型D3QN深度强化学习的铁路智能选线方法[J].铁道科学与工程学报,2022,19(2):344-350.
YUAN Quan,ZENG Wen-qu,LI Zi-han.Intelligent railway alignment method based on improved D3QN deep reinforcement learning[J].Journal of Railway Science and Engineering,2022,19(2):344-350.
[4]HOWARD B E,BRAMMICK Z,SHAW J F.Optimum curvature principle in highway routing[J].Journal of the Highway Division,1968,94(1):61-82.
[5]SHAW J F,HOWARD B E.Comparison of two integration methods in transportation routing[J].Transportation Research Record,1981,8(6):8-13.
[6]SHAW J F B,HOWARD B E.Expressway route optimization by OCP[J].Journal of Transportation Engineering,1982,108(3):227-243.
[7]HOGANJ D.Experience with OPTLOC-optimum location of highways by computer[R].London:PTRC,1973.
[8]TRIETSCH D.A family of methods for preliminary highway alignment[J].Transportation Science,1987,21(1):17-25.
[9]詹振炎,常新生.人机交互系统铁路线路平纵面整体优化设计[J].铁道工程学报,1990(1):87-91.
ZHAN Zhen-yan,CHANG Xin-sheng.Optimization design of horizontal and vertical plane of railway line based on human-computer interaction system[J].Journal of Railway Engineering Society,1990(1):87-91.
[10]常新生,詹震炎.铁路线路平纵面整体优化设计的理论与方法[J].铁道学报,1995,17(4):75-81.
CHANG Xin-sheng,ZHAN Zhen-yan.Theory and method of the whole optimization design of railway line plane and longitudinal plane[J].Journal of Railway Engineering-Society,1995,17(4):75-81.
[11]马庆雷.基于遗传算法的公路平面优化[J].中国公路学报,2006,19(1):42-46.
MA Qing-lei.Optimization of highway plane based on genetic algorithm[J].China Journal of Highway and Transport,2006,19(1):42-46.
[12]许金良,王海君,杨少伟.基于遗传算法的公路纵断面优化[J].交通运输工程学报,2003,3(2):48-52.
XU Jin-liang,WANG Hai-jun,YANG Shao-wei.Optimization of highway longitudinal section based on genetic algorithm[J].Journal of Traffic and Transportation Engineering,2003,3(2):48-52.
[13]叶亚丽,庄传仪.公路路线多目标遗传算法优化设计研究[J].公路,2012(10):101-107.
YE Ya-li,ZHUANG Chuan-yi.Multi-objective genetic algorithm optimization design research for highway alignment[J].Highway,2012(10):101-107.
[14]张 驰,杨 坤,汪双杰,等.青藏高原多年冻土区公路智能选线方法[J].交通运输工程学报,2016,16(4):14-25.
ZHANG Chi,YANG Kun,WANG Shuang-jie,et al.Intelligent alignment method for highway in permafrost area of Qinghai-Tibet Plateau[J].Journal of Traffic and Transportation Engineering,2016,16(4):14-25.
[15]韩春华,易思蓉,杨 扬.基于最优路径分析的线路初始平面自动生成方法[J].西南交通大学学报,2011,46(2):252-258.
HAN Chun-hua,YI Si-rong,YANG Yang.Automatic generating method of initial plane based on optimal path analysis[J].Journal of Southwest Jiaotong University,2011,46(2):252-258.
[16]杨宏志,韩跃杰,李 芬,等.基于GIS和遗传算法的公路智能选线[J].长安大学学报(自然科学版),2009,29(3):48-53.
YANG Hong-zhi,HAN Yue-jie,LI Fen,et al.Highway intelligent alignment based on GIS and genetic algorithm[J].Journal of Chang'an University(Natural Science Edition),2009,29(3):48-53.
[17]夏沁雪.水电站进场道路智能选线算法及方案比选方法研究[D].武汉:华中科技大学,2022.
XIA Qin-xue.Research on intelligent route selection algorithm and scheme comparison method of approach road for hydropower station[D].Wuhan:Huazhong University of Science and Technology,2022.
[18]王月爽.基于改进A*算法的山地风电场道路智能选线方法研究[D].石家庄:石家庄铁道大学,2022.
WANG Yue-shuang.Research on intelligent road route selection method for mountain wind farm based on improved A* algorithm[D].Shijiazhuang:Shijiazhuang Tiedao University,2022.
[19]周斌科,毕静刚,杨保华,等.道路智能选线技术与方法研究[J].工程管理学报,2024,38(6):86-91.
ZHOU Bin-ke,BI Jing-gang,YANG Bao-hua,et al.Research on intelligent alignment technology and method[J].Engineering management journal,2024,38(6):86-91.
[20]陈雯琦,黄姝娟,吴霜霜,等.基于粒子群优化算法的多无人机多目标航迹路径规划[J].微电子学与计算机,2023(9):21-28.
CHEN Qi-wen,HUANG Shu-juan,WU Shuang-shuang,et al.Path planning of multi-target trajectory for multi-UAV based on particle swarm optimization algorithm[J].Microelectronics and Computer,2023(9):21-28.
[21]智瀚宇,贾新春,张学立.无人机路径规划:一种粒子群和灰狼复合算法[J].控制工程,2023,DOI:10.19304/j.ISSN1000-7180.2002.0660.
ZHI Han-yu,JIA Xin-chun,ZHANG Xue-li.UAV path planning:A particle swarm and gray wolf composite algorithm[J].Control Engineering of China,2023,DOI:10.19304/j.ISSN1000-7180.2002.0660.
[22]李锐君,董素鸽.基于粒子群算法的无人机灭火路径规划仿真[J].计算机仿真,2023,40(9):43-48.
LI Rui-jun,DONG Su-ge.Simulation of UAV fire extinguishing path planning based on particle swarm optimization algorithm[J].Computer Simulation,2023,40(9):43-48.
[23]胡章芳,冯淳一,罗 元.改进粒子群优化算法的移动机器人路径规划[J].计算机应用研究,2021,38(10):3089-3092.
HU Zhang-fang,FENG Chun-yi,LUO Yuan.Path planning of mobile robot based on improved particle swarm optimization algorithm[J].Application Research of Computers,2021,38(10):3089-3092.
[24]康 亮,徐 杨,尹丽华.一种面向群组机器人搜索任务的改进粒子群算法[J].中国科技论文,2023,18(11):1244-1249.
KANG Liang,XU Yang,YIN Li-hua.An improved particle swarm optimization algorithm for group robot search tasks[J].China Sciencepaper,2023,18(11):1244-1249.
[25]温琼阳,朱学军,李 毅,等.基于改进粒子群算法的机械臂能耗轨迹优化[J].计算机应用研究,2023,40(9):1-8.
WEN Qiong-yang,ZHU Xue-jun,LI Yi.Optimization of energy consumption trajectory of robotic arm based on improved particle swarm optimization algorithm[J].Application Research of Computers,2023,40(9):1-8.
[26]刘小红,张人龙,单汨源.基于云模型的量子混合粒子群算法及其应用[J].统计与决策,2021,37(3):54-58.
LIU Xiao-hong,ZHANG Ren-long,SHAN Mi-yuan.Quantum hybrid particle swarm optimization based on cloud model and its application[J].Statistics and Decision,2021,37(3):54-58.
[27]MOHAMMAD M,SAEED M,VAHID B.An optimization model for synchronous road geometric and pavement enhancements[J].Journal of Traffic and Transportation Engineering(English Edition),2021,8(3):421-438.
[28]王素欣,高 利,崔小光,等.交通分配的粒子群优化算法[J].交通运输工程学报,2007,7(5):97-100,122.
WANG Su-xin,GAO Li,CUI Xiao-guang.Particle swarm optimization algorithm for traffic allocation[J].Journal of Traffic and Transportation Engineering,2007,7(5):97-100,122.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(2):1.

备注/Memo

备注/Memo:
收稿日期:2024-09-11
基金项目:国家重点研发计划项目(2021YFB2600403); 中央高校基本科研业务费专项资金项目(300102212203)
作者简介:贾兴利(1986-),男,山东济宁人,教授,博士研究生导师,E-mail:jiaxingli@chd.edu.cn。
更新日期/Last Update: 2025-04-01