[1]王 艳,叶 敏,李嘉波,等.基于改进FNLM和HSEDO的振动筛轴承早期故障诊断[J].长安大学学报(自然科学版),2025,45(01):167-178.[doi:10.19721/j.cnki.1671-8879.2025.01.014]
 WANG YAN,YE Min,LI Jia-bo,et al.Early fault diagnosis of vibrating screen bearings based on improved FNLM and HSEDO[J].Journal of Chang’an University (Natural Science Edition),2025,45(01):167-178.[doi:10.19721/j.cnki.1671-8879.2025.01.014]
点击复制

基于改进FNLM和HSEDO的振动筛轴承早期故障诊断()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年01期
页码:
167-178
栏目:
汽车与机械工程
出版日期:
2025-02-28

文章信息/Info

Title:
Early fault diagnosis of vibrating screen bearings based on improved FNLM and HSEDO
文章编号:
1671-8879(2025)01-0167-12
作者:
王 艳1叶 敏2李嘉波1张翠红1卜鹏辉1
(1. 西安石油大学 西安市高难度复杂油气井完整性评价重点实验室,陕西 西安 710065; 2. 长安大学 道路施工技术与装备教育部重点实验室,陕西 西安 710061)
Author(s):
WANG YAN1 YE Min2 LI Jia-bo1 ZHANG Cui-hong1 BU Peng-hui1
(1. Xi'an Key Laboratory of Wellbore Integrity Evaluation, Xi'an Shiyou University, Xi'an 710065,Shaanxi, China; 2. Key Laboratory of Expressway Construction Machinery of Shaanxi Province,Chang'an University, Xi'an 710061, Shaanxi, China)
关键词:
机械工程 振动筛轴承 故障诊断 IFNLM HSEDO
Keywords:
mechanical engineering vibrating screen bearing fault diagnosis IFNLM HSEDO
分类号:
U415.5
DOI:
10.19721/j.cnki.1671-8879.2025.01.014
文献标志码:
A
摘要:
针对振动筛滚动轴承早期故障特征微弱,被强背景噪声和多振源干扰淹没的诊断难题,提出一种基于改进快速非局部均值滤波(IFNLM)和高阶对称包络导数算子(HSEDO)的滚动轴承故障特征提取方法。首先,根据滚动轴承故障信号周期性结构特征,通过对快速非局部均值滤波(FNLM)算法相似度量和权值分配函数的改进,提出IFNLM算法,滤除轴承原始振动信号中的背景噪声和振源干扰; 其次,在包络导数算子(EDO)的基础上,融入对称差分技术和高阶思想,提出HSEDO对降噪后的信号进行解调,从而识别轴承故障特征。最后,搭建振动筛激振器滚动轴承故障试验台,对所提方法的可行性和优越性进行验证。研究结果表明:IFNLM算法具有良好的去噪效果、噪声鲁棒性以及运行效率,IFNLM算法的运行速度相较于改进前提高了77%,约是小波阈值降噪算法的12倍,中值滤波算法的4倍; HSEDO算法具有良好的解调特性和抗干扰能力,在谐波干扰不高于20种的情况下,HSEDO算法处理的信号干扰比高于 EDO; 所提IFNLM-HSEDO算法与NLM+包络谱、WTD+TEO等现有方法相比,具有更高的故障特征提取能力和执行效率,在取50 000个采样点运行时,耗时仅为0.050 8 s,且采样点越多其快速性能越突出。研究成果对丰富机械系统故障诊断理论,保证机械设备安全可靠运行具有重要意义。
Abstract:
A fault feature extraction method of rolling bearings based on improved fast nonlocal mean filtering(IFNLM)and high-order symmetric envelope derivative operator(HSEDO)was proposed to address the diagnostic challenge that weak early fault features of vibrating screen rolling bearings often being overwhelmed by heavy background noise and multiple vibration sources. Firstly, based on the periodic structural characteristics of the rolling bearing fault signals, an IFNLM algorithm was proposed by improving the similarity measure and weight assignment function of FNLM, which can filter the background noise and vibration source interference in the original vibration signals of the bearing. Secondly, based on the envelope derivative operator(EDO), integrating the symmetric difference technique and higher order idea, the HSEDO was proposed to demodulate the denoised signal and identify the bearing fault characteristics. Finally, the feasibility and superiority of the proposed method were verified by the vibrating screen exciter rolling bearing fault test rig. The research results show that the IFNLM algirithm has a good noise removal effect, noise robustness, and operation efficiency. The running speed of the IFNLM algorithm after improvement is 77% higher than before, about 12 times the wavelet threshold denoising algorithm and 4 times the median filtering algorithm. The HSEDO algorithm has outstanding demodulation and anti-interference capabilities, and its performance is superior to that of the EDO under no more than 20 types of harmonic interference. Compared with existing methods such as the NLM + envelope spectrum and WTD + TEO, the proposed IFNLM-HSEDO algorithm has higher fault feature extraction capability and execution efficiency. When 50 000 sampling points are taken, the running time is only 0.050 8 s, and the more sampling points, the more prominent the superiority of its fast performance. The research results are of great significance to enrich the theory of mechanical system fault diagnosis and ensure the safe and reliable operation of the equipment.4 tabs, 12 figs, 28 refs.

参考文献/References:

[1] ZHAO D F,LIU S L,GU D,et al.Improved multi-scale entropy and it's application in rolling bearing fault feature extraction[J].Measurement,2020,152:107361.
[2]LU J X,YU J B.Average combination difference morphological filters for fault feature extraction of bearing[J].Mechanical Systems and Signal Processing,2018,100:827-845.
[3]ZHOU T,ZHANG G,LU N,et al.A rotating machinery fault feature extraction approach based on an adaptive wavelet denoising method and synthetic detection index[J].Measurement Science and Technology,2023,34(7):075102.
[4]LAHA S K,SWARNAKAR B,KANSABANIK S,et al.A novel signal denoising method using stationary wavelet transform and particle swarm optimization with application to rolling element bearing fault diagnosis[J].Materials Today,2022,66:3935-3943.
[5]WANG L,SHAO Y.Fault feature extraction of rotating machinery using a reweighted complete ensemble empirical mode decomposition with adaptive noise and demodulation analysis[J].Mechanical Systems and Signal Processing,2020,138:106545.
[6]TIAN S,ZHEN D,LIANG X,et al.Early fault feature extraction for rolling bearings using adaptive variational mode decomposition with noise suppression and fast spectral correlation[J].Measurement Science and Technology,2023,34(6):065112.
[7]CHEN Z,GUO L,GAO H,et al.A fault pulse extraction and feature enhancement method for bearing fault diagnosis[J].Measurement,2021,182:109718.
[8]YAO R,JIANG H,LI X,et al.Bearing incipient fault feature extraction using adaptive period matching enhanced sparse representation[J].Mechanical Systems and Signal Processing,2022,166:108467.
[9]GUO J,ZHEN D,LI H,et al.Fault feature extraction for rolling element bearing diagnosis based on a multi-stage noise reduction method[J].Measurement,2019,139:226-235.
[10]BUADES A C,BARTOMEU.A review of image denoising algorithms,with a new one[J].Multiscale Model Simul,2005,4(2):490-530.
[11]MAHMOUDI M,SAPIRO G.Fast image and video denoising via nonlocal means of similar neighborhoods[J].IEEE Signal Processing Letters,2005,12(12):839-842.
[12]李浠铭,甘新胜,程健庆.基于快速非局部均值滤波的SAR图像相干斑抑制算法[J].指挥控制与仿真,2020,42(6):63-68.
LI Xi-ming,GAN Xin-sheng,CHENG Jian-qing.Despeckling algorithm for SAR image based on fast non-local mean filtering[J].Command Control and Simulation,2020,42(06):63-68.
[13]崔亚彤,王胜侯,蔡忠贤.基于快速自适应非局部均值滤波的地震随机噪声压制方法[J].物探与化探,2022,46(5):1187-1195.
CUI Ya-tong,WANG Sheng-hou,CAI Zhong-xian.Seismic random noise attenuation method based on the fast adaptive non-local means filtering algorithm[J].Geophysical and Geochemical Exploration,2022,46(5):1187-1195.
[14]TASDIZEN T.Principal neighborhood dictionaries for nonlocal means image denoising[J].IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society,2009,18(12):2649-2660.
[15]DARBON J,CUNHA A,CHAN T F,et al.Fast nonlocal filtering applied to electron cryomicroscopy[C]//IEEE.2008 5th IEEE International Symposium on Biomedical Imaging:From Nano to Macro.New York:IEEE,2008:1331-1334.
[16]CHEN W,LI J,WANG Q,et al.Fault feature extraction and diagnosis of rolling bearings based on wavelet thresholding denoising with CEEMDAN energy entropy and PSO-LSSVM[J].Measurement,2021,172:108901.
[17]YAN H,ZHOU H,WANG Y,et al.Combining the synchrosqueezing generalized S-transform of variational mode decomposition with the Teager-Kaiser energy operator to calculate the attenuation gradient for identifying oil and gas reservoirs[J].Acta Geophysica,2023,71(2):795-812.
[18]HAN T,LIU Q,ZHANG L,et al.Fault feature extraction of low speed roller bearing based on Teager energy operator and CEEMD[J].Measurement,2019,138:400-408.
[19]WEI D,JIANG H,SHAO H,et al.An optimal variational mode decomposition for rolling bearing fault feature extraction[J].Measurement Science and Technology,2019,30(5):055004.
[20]孟 宗,李姗姗,季 艳.基于对称差分能量算子解调的局部均值分解端点效应抑制方法[J].机械工程学报,2014,50(13):80-87.
MENG Zong,LI Shan-shan,JI Yan.Restraining method for end effect of local mean decomposition based on energy operator demodulation of symmetrical differencing[J].Journal of Mechanical Engineering,2014,50(13):80-87.
[21]XU Y,LI Y,WANG Y,et al.A novel energy demodulation method using B-spline approximation for bearing fault detection[J].Measurement,2022,189:110635-110635.
[22]MARAGOS P,POTAMIANOS A.Higher order differential energy operators[J].IEEE Signal Processing Letters,2002,2(8):152-154.
[23]O'TOOLE J M,TEMKO A,STEVENSON N.Assessing instantaneous energy in the EEG:A non-negative,frequency-weighted energy operator[C]//IEEE.2014 36th Annual international conference of the IEEE Engineering in Medicine and Biology Society.New York:IEEE,2014:3288-3291.
[24]王银杰.基于非局部均值滤波的图像去噪算法[D].哈尔滨:哈尔滨理工大学,2019.
WANG Yin-jie.The study of image denoising methods based on the non-local means[D].Harbin:Harbin University of Science and Technology,2019.
[25]WANG Y,GU L,XU Y.Enhancement of bearing fault detection using an alternative analytic energy operator and sparse Bayesian step-filtering[J].Journal of Mechanical Science and Technology,2021,35(3):905-920.
[26]付伟清,王红军,张怀存.小波阈值去噪和能量算子的滚动轴承故障诊断[J].北京信息科技大学学报(自然科学版),2017,32(1):40-43.
FU Qing-wei,WANG Hong-jun,ZHANG Huai-cun.Rolling bearing fault diagnosis based on wavelet threshold denoising and energy operator[J].Journal of Beijing Information Science and Technology University(Natural Science Edition),2017,32(1):40-43.
[27]唐晓红,胡俊锋,熊国良,等.自适应非局部均值及在轴承故障检测中的应用[J].振动测试与诊断,2019,39(1):61-67.
TANG Xiao-hong,HU Jun-feng,XIONG GUO-liang.Adaptive non-local mean with application in fault detection of rolling bearings[J].Journal of Vibration,Measurement and Diagnosis,2019,39(1):61-67.
[28]WANG Y H,YEH C H,YOUNG H W V,et al.On the computational complexity of the empirical mode decomposition algorithm[J].Physica A Statistical Mechanics and Its Applications,2014,400:159-167.

相似文献/References:

[1]罗文军,罗天洪,甘信富,等.基于模糊-PI控制的沥青混凝土摊铺机行驶系统仿真[J].长安大学学报(自然科学版),2012,32(01):0.
[2]刘清涛,蔡宗琰,刘晓婷,等.面向工艺路线的废旧零部件可再制造性评价[J].长安大学学报(自然科学版),2012,32(03):105.
 LIU Qing-tao,CAI Zong-yan,LIU Xiao-ting,et al.Assessment on remanufacturability of waste parts for process route[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):105.
[3]林 涛,刘 学,董忠红,等.大差速比平地机离合器接合过程[J].长安大学学报(自然科学版),2012,32(06):100.
 LIN Tao,LIU Xue,DONG Zhong-hong,et al.Engagement process of motor graders big differential speed ratio clutch[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):100.
[4]刘 钊,焦生杰.工程机械用发动机动力性能评价指标[J].长安大学学报(自然科学版),2012,32(06):106.
 LIU Zhao,JIAO Sheng-jie.Evaluation criterion of engine power properties for construction machinery[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):106.
[5]孟彩茹,李 磊,赵 真,等.沥青搅拌设备振动筛筛箱的动态特性分析[J].长安大学学报(自然科学版),2012,32(02):101.
 MENG Cai-ru,LI Lei,ZHAO Zhen,et al.Dynamic performance analysis of vibrating screen box in asphalt mixer[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):101.
[6]侯劲汝,沈建军,徐 倩.双钢轮振动压路机振幅不均匀性的分析[J].长安大学学报(自然科学版),2010,30(01):100.
 HOU Jing-ru,SHEN Jian-jun,XU Qian.Analysis on uneven amplitude of tandem vibratory roller[J].Journal of Chang’an University (Natural Science Edition),2010,30(01):100.
[7]赵铁栓,焦生杰,叶 敏.振动压路机无级调幅H_2/H_∞控制[J].长安大学学报(自然科学版),2010,30(03):87.
 ZHAO Tie-shuan,JIAO Sheng-gjie,YE Min.H2/H∞ control for stepless amplitude modulation of vibratory roller[J].Journal of Chang’an University (Natural Science Edition),2010,30(01):87.
[8]焦生杰,卡玛尔,林 涛,等.H型液压滤波器的合理应用[J].长安大学学报(自然科学版),2010,30(04):97.
 JIAO Sheng-jie,KAMAL Washahi,LIN Tao,et al.Reasonable application on H type hydraulic filter[J].Journal of Chang’an University (Natural Science Edition),2010,30(01):97.
[9]夏毅敏,薛 静,周喜温.软岩切削过程的三维数值模拟[J].长安大学学报(自然科学版),2010,30(04):102.
 XIA Yi-min,XUE Jing,ZHOU Xi-wen.3-D dimensional numerical simulation of soft rock cutting process[J].Journal of Chang’an University (Natural Science Edition),2010,30(01):102.
[10]顾海荣,焦生杰,肖翀宇,等.全液压路面铣刨机铣刨系统动力学仿真[J].长安大学学报(自然科学版),2010,30(05):103.
 GU Hai-rong,JIAO Sheng-jie,XIAO Chong-yu,et al.Dynamics simulation of milling system used in hydraulic milling machine[J].Journal of Chang’an University (Natural Science Edition),2010,30(01):103.

备注/Memo

备注/Memo:
收稿日期:2024-05-11
基金项目:陕西省自然科学基础研究计划项目(2024JC-YBQN-0446); 重点科研平台开放基金项目(300102253510);
陕西省重点研发计划项目(2023-GHYB-05,2023-YBSF-104)
作者简介:王 艳(1986-),女,江苏徐州人,讲师,工学博士,E-mail:220501@xsyu.edu.cn。
更新日期/Last Update: 2025-02-25