[1]高 琼,刘国坤,刘 琦.基于优化算法及ANSYS二次开发的钢筋混凝土偏心受压构件应力计算[J].长安大学学报(自然科学版),2025,45(01):92-101.[doi:10.19721/j.cnki.1671-8879.2025.01.008]
 GAO Qiong,LIU Guo-kun,LIU Qi.Stress analysis of eccentric compression reinforced concrete component based on optimization algorithm and secondary development of ANSYS[J].Journal of Chang’an University (Natural Science Edition),2025,45(01):92-101.[doi:10.19721/j.cnki.1671-8879.2025.01.008]
点击复制

基于优化算法及ANSYS二次开发的钢筋混凝土偏心受压构件应力计算()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年01期
页码:
92-101
栏目:
桥梁与隧道工程
出版日期:
2025-02-28

文章信息/Info

Title:
Stress analysis of eccentric compression reinforced concrete component based on optimization algorithm and secondary development of ANSYS
文章编号:
1671-8879(2025)01-0092-10
作者:
高 琼1刘国坤2刘 琦3
(1. 湖南城市学院 土木工程学院,湖南 益阳 413000; 2. 湖南工程学院 建筑工程学院,湖南 湘潭 411104; 3. 山东省交通规划设计院集团有限公司,山东 济南 250101)
Author(s):
GAO Qiong1 LIU Guo-kun2 LIU Qi3
(1. School of Civil Engineering, Hunan City University, Yiyang 413000, Hunan, China; 2. School of Architectural Engineering, Hunan Institute of Engineering, Xiangtan 411104, Hunan, China; 3. Shandong Provincial Communications Planning and Design Institute Group Co. Ltd., Jinan 250101, Shandong, China)
关键词:
桥梁工程 偏心受压构件 优化算法 ANSYS二次开发
Keywords:
bridge engineering eccentric compression comporment optimization algorithm secondary development of ANSYS
分类号:
U411
DOI:
10.19721/j.cnki.1671-8879.2025.01.008
文献标志码:
A
摘要:
为精确计算各类型截面钢筋混凝土偏心受压构件的截面应力,提出一种基于优化算法的计算方法,该方法考虑受拉区混凝土退出工作后截面的应力重分布效应。首先,将中性轴方程参数作为优化变量,以受压区混凝土和全部钢筋提供的截面抵抗力矩与外荷载差作为目标函数,采用优化算法搜索目标函数最小时的中性轴位置,实现内外力平衡; 随后,根据所提出方法编制FORTRAN程序,以7个不同类型的截面为算例,验证提出方法和程序; 最后,将应力计算程序编译连接进有限元程序ANSYS UPFs提供的用户命令子程序中,进行二次开发,实现梁单元模拟的钢筋混凝土构件截面应力计算功能。研究结果表明:算例的外荷载与截面抵抗力矩的差值均较小,采用提出方法计算截面应力的精度较高; 编制程序可应用于任意截面的双向偏心受压构件应力重分布计算,通用性较强; 二次开发后的ANSYS程序可大幅提高在荷载步较多时的截面应力分析效率; 提出的优化数学模型建立思路,以及对ANSYS二次开发实现定制功能的方法可为解决同类工程问题提供参考。
Abstract:
In order to accurately calculate the sectional stress of reinforced concrete eccentric compression members with different sections, a methodology based on optimization algorithm was proposed, which can take into account the stress redistribution effect of the section after the concrete in the tension zone withdraw from work. Firstly, the parameters of the neutral axis equation were taken as optimization variables, and the difference between the resistance moment of the cross section provided by the concrete and all the steel bars in the compression zone and external load was taken as the objective function. Then, according to the proposed stress calculation methodology, a FORTRAN program was complied, and 7 different types of cross sections were taken as examples to verify the optimization methodology and the corresponding program. Finally, the stress calculation program was complied and connected into the user command subroutine provided by the finite element program ANSYS UPFs for secondary development to realize the section stress calculation function of beam element simulation of reinforced concrete members. The results show that the difference between the external load and the section resistance moment of the example is small, and the optimization algorithm can calculate the section stress with high precision. The program can be used to calculate the stress redistribution of the bidirectional eccentric compression member with arbitrary section, and has strong universality. After the secondary development, ANSYS program can greatly improve the efficiency of the sectional stress analysis with a large number of load steps. The method of establishing optimization mathematical model and realizing custom function in ANSYS secondary development can provide reference for solving similar engineering problems.2 tabs, 8 figs, 27 refs.

参考文献/References:

[1] 陆新征,江见鲸.用ANSYS Solid 65单元分析混凝土组合构件复杂应力[J].建筑结构,2003,33(6):22-24.
LU Xin-zheng,JIANG Jian-jing.Analysis for concrete structure under complex stress condition with Solid 65 FEA element of ANSYS[J].Building Structure,2003,33(6):22-24.
[2]TB 10092—2017,铁路桥涵混凝土结构设计规范[S].
TB 10092—2017,Code for design of concrete structures of railway bridge and culvert[S].
[3]郑玉国,袁万城,屈本宁.基于ANSYS二次开发的倒张型悬索桥分阶段非线性优化设计[J].结构工程师,2008,24(5):57-63.
ZHENG Yu-guo,YUAN Wan-cheng,QU Ben-ning.Stepping nonlinear optimal design of under-tension suspension bridge based on second-development of ANSYS[J].Structural Engineers,2008,24(5):57-63.
[4]郭浩洋,戚 蓝,李少明,等.基于ANSYS二次开发的早龄期混凝土徐变应力计算[J].长江科学院院报,2016,33(9):138-142,154.
GUO Hao-yang,QI Lan,LI Shao-ming,et al.Calculation of creep stress of early-age concrete based on further development of ANSYS[J].Journal of Yangtze River Scientific Research Institute,2016,33(9):138-142,154.
[5]赵蒙屏,费文平,贾水欣.基于ANSYS二次开发的大体积混凝土温度徐变应力分析[J].武汉大学学报(工学版),2016,49(4):516-520.
ZHAO Meng-ping,FEI Wen-ping,JIA Shui-xin.Temperature creep stress analysis of mass concrete based on secondary development of ANSYS[J].Engineering Journal of Wuhan University,2016,49(4):516-520.
[6]华旭刚,陈政清.基于ANSYS二次开发的大跨度桥梁风致颤振分析[J].计算机工程与应用,2002,38(10):215-217.
HUA Xu-gang,CHEN Zheng-qing.Wind-induced flutter analysis of long-span bridge based on second development of ANSYS[J].Computer Engineering and Applications,2002,38(10):215-217.
[7]袁 野,费文平.基于ANSYS软件UPFs的邓肯-张模型二次开发[J].武汉大学学报(工学版),2021,54(7):601-608.
YUAN Ye,FEI Wen-ping.Secondary development of Duncan-Chang model based on UPFs of ANSYS software[J].Engineering Journal of Wuhan University,2021,54(7):601-608.
[8]童森林.桥梁设计算法新解[M].北京:中国铁道出版社,1998.
TONG Sen-lin.New solution of bridge design algorithm[M].Beijing:China Railway Publishing House,1998.
[9]童森林.圆端形截面配筋计算[J].铁道工程学报,1994,11(1):69-82.
TONG Sen-lin.Calculation of reinforcement of circular end section[J].Journal of Railway Engineering Society,1994,11(1):69-82.
[10]荣国能.矩形截面钢筋混凝土斜偏心受压构件的应力计算(容许应力法)[J].西南交通大学学报,1988,23(2):22-31.
RONG Guo-neng.A method of stress analysis for eccentrically loaded rectangular reinforced concrete short column with biaxial bending[J].Journal of Southwest Jiaotong University,1988,23(2):22-31.
[11]刘锡略.任意多边形截面应力重分布计算(附钢筋混凝土截面偏心受压应力计算)[J].铁道标准设计通讯,1986,30(1):10-21.
LIU Xi-lue.Calculation of stress redistribution of arbitrary polygon section(with calculation of eccentric compression stress of reinforced concrete section)[J].Railway Standard Design,1986,30(1):10-21.
[12]TOMEI V,FAIELLA D,CASCONE F,et al.Structural grammar for design optimization of grid shell structures and diagrid tall buildings[J].Automation in Construction,2022,143:104588.
[13]LI Y,LAI Y P,LU G,et al.Innovative design of long-span steel-concrete composite bridge using multi-material topology optimization[J].Engineering Structures,2022,269:114838.
[14]KUSANO I,CID M M,BALDOMIR A,et al.Reliability based design optimization for bridge girder shape and plate thicknesses of long-span suspension bridges considering aeroelastic constraint[J].Journal of Wind Engineering and Industrial Aerodynamics,2020,202:104176.
[15]吴佳东,颜东煌,许红胜,等.基于可靠度指标的小概率失效结构优化[J].长安大学学报(自然科学版),2021,41(1):50-58.
WU Jia-dong,YAN Dong-huang,XU Hong-sheng,et al.Small probability failure structure optimization based on reliability index[J].Journal of Chang'an University(Natural Science Edition),2021,41(1):50-58.
[16]GAO Q,YANG M G,QIAO J D.A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder[J].Structural Engineering and Mechanics,2017,64(5):567-577.
[17]JAHJOUH M,ERHAN S.Optimization of prestressed concrete bridge girder section using a modified harmony search algorithm[J].Structures,2022,46:625-636.
[18]SONG C L,XIAO R C,SUN B,et al.Cable force optimization of cable-stayed bridges:A surrogate model-assisted differential evolution method combined with B-Spline interpolation curves[J].Engineering Structures,2023,283:115856.
[19]GOMES G F,DE ALMEIDA F A,JUNQUEIRA D M,et al.Optimized damage identification in CFRP plates by reduced mode shapes and GA-ANN methods[J].Engineering Structures,2019,181:111-123.
[20]YAO D,DUAN Y C,LI M Y,et al.Hybrid identification method of coupled viscoplastic-damage constitutive parameters based on BP neural network and genetic algorithm[J].Engineering Fracture Mechanics,2021,257:108027.
[21]ZHANG Y,GUO J,ZHOU Q,et al.Research on damage identification of hull girder based on probabilistic neural network(PNN)[J].Ocean Engineering,2021,238:109737.
[22]LI H L,WANG T Y,WU G.Dynamic response prediction of vehicle-bridge interaction system using feedforward neural network and deep long short-term memory network[J].Structures,2021,34:2415-2431.
[23]LI D Y,LIU Z D,XIAO P,et al.Intelligent rockburst prediction model with sample category balance using feedforward neural network and Bayesian optimization[J].Underground Space,2022,7(5):833-846.
[24]史春生.混凝土系杆拱桥非线性混合整型变量优化研究[D].长沙:中南大学,2012.
SHI Chun-sheng.The nonlinear mixed-integer parameters optimization of the concrete tied arch bridge[D].Changsha:Central South University,2012.
[25]裘伯永,宋玉芳.斜偏心受压钢筋混凝土截面应力计算:优化方法应用[J].铁道标准设计通讯,1982,26(8):13-18.
QIU Bo-yong,SONG Yu-fang.Stress calculation of reinforced concrete section under oblique eccentric compression—Application of optimization method[J].Railway Standard Design,1982,26(8):13-18.
[26]GB 50111—2006,铁路工程抗震设计规范[S].
GB 50111—2006,Code for seismic design of railway engineering[S].
[27]孟栋梁,高 琼,杨孟刚.高铁简支梁桥横向地震碰撞效应振动台试验研究[J].振动与冲击,2019,38(24):63-73.
MENG Dong-liang,GAO Qiong,YANG Meng-gang.Shaking table tests on transverse pounding effect of high-speed railway simply-supported girder bridges under earthquake excitations[J].Journal of Vibration and Shock,2019,38(24):63-73.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):44.

备注/Memo

备注/Memo:
收稿日期:2024-05-12
基金项目:湖南省教育厅科学研究项目(2022B0792,2022B0737); 山东省交通规划设计院集团有限公司小、微项目(KJ-2022-SJY-X009); 长沙理工大学重点实验室开放基金项目(18kc02)
作者简介:高 琼(1989-),女,湖南永州人,讲师,工学博士,E-mail:GQ_CSU@qq.com。
更新日期/Last Update: 2025-02-25