[1]朱伟庆,张亚飞,张丽华,等.盐冻环境下混凝土桥梁服役性能演变规律及耐久性评价指标综述[J].长安大学学报(自然科学版),2025,45(01):69-91.[doi:10.19721/j.cnki.1671-8879.2025.01.007]
 ZHU Wei-qing,ZHANG Ya-fei,ZHANG Li-hua,et al.Review on evolution law of service performance and durability evaluation indexes of concrete bridges in salt-frozen environment[J].Journal of Chang’an University (Natural Science Edition),2025,45(01):69-91.[doi:10.19721/j.cnki.1671-8879.2025.01.007]
点击复制

盐冻环境下混凝土桥梁服役性能演变规律及耐久性评价指标综述()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年01期
页码:
69-91
栏目:
桥梁与隧道工程
出版日期:
2025-02-28

文章信息/Info

Title:
Review on evolution law of service performance and durability evaluation indexes of concrete bridges in salt-frozen environment
文章编号:
1671-8879(2025)01-0069-23
作者:
朱伟庆1张亚飞1张丽华2贾金青2殷天扬1
(1. 长安大学 公路学院,陕西 西安 710064; 2. 大连理工大学 建设工程学院,辽宁 大连 116024)
Author(s):
ZHU Wei-qing1 ZHANG Ya-fei1 ZHANG Li-hua2 JIA Jin-qing2 YIN Tian-yang1
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China)
关键词:
桥梁工程 服役性能 综述 混凝土桥梁 耐久性 评价指标 盐冻环境
Keywords:
bridge engineering service performance review concrete bridge durability evaluation index salt-frozen environment
分类号:
U448.21
DOI:
10.19721/j.cnki.1671-8879.2025.01.007
文献标志码:
A
摘要:
为揭示盐冻环境下混凝土桥梁服役性能演变规律,对在役混凝土桥梁的耐久性设计与科学维养提供决策依据,总结盐冻环境下混凝土桥梁的典型病害和空间分布,分析盐冻环境下混凝土和钢筋材料、混凝土构件性能劣化规律与机理,并提炼出影响因子及影响规律,凝练出盐冻环境下混凝土桥梁服役状况演变的材料-构件-结构的关联特性,系统梳理规范中混凝土桥梁耐久性评价指标及其检测方法,在此基础上建立盐冻环境下混凝土桥梁的耐久性评价指标体系,并建议各指标的警戒阈值和极限阈值。研究结果表明:盐冻环境下混凝土桥梁典型病害为梁体和桥墩的混凝土剥落及钢筋锈蚀,且表现出显著的空间分布特征,北方寒冷和严寒地区,尤其是沿海与盐渍土地区混凝土桥梁的盐冻病害更加严重; 盐冻环境下材料性能演变可以大致分为初始阶段、发展阶段与加速阶段,各阶段中混凝土构件的承载能力退化由混凝土与钢筋力学性能以及二者之间黏结性能下降共同导致; 影响材料、构件性能劣化的因子可归结为水胶比、掺和料、外加剂、保护层厚度、钢筋种类、持载状态与初始裂缝等方面; 混凝土桥梁的性能劣化主要表现为其关键混凝土构件的性能劣化,但其服役状况演变通过应力或受力状态在材料、构件、结构3个层面存在显著关联; 规范中的耐久性指标可划分为材料属性、混凝土损伤、氯离子侵蚀、钢筋锈蚀4类; 建立的耐久性评价指标体系充分考虑了指标的使用频率与可检测性,且可全面体现盐冻环境下混凝土桥梁典型病害特征; 未来应进一步开展疲劳荷载和盐冻循环耦合作用下混凝土构件性能演变方面的研究,基于大数据和机器学习技术,建立理论和数据双驱动的盐冻环境下混凝土桥梁服役状态演变模型,并结合更深入的理论研究及先进技术,提出综合性评价指标和更精确、更效率的检测方法。
Abstract:
In order to reveal the evolution law of the service performance of concrete bridges in salt-frozen environment and provide decision-making basis for the durability design and scientific maintenance of in-service concrete bridges, the typical diseases and spatial distribution of concrete bridges in salt-frozen environment were summarized. The deterioration law and mechanism of the performance of concrete and steel bar and concrete members in salt-frozen environment were analyzed, and the influencing factors and laws were extracted. The correlation characteristics of material-member-structure of the service condition evolution of concrete bridges in salt-frozen environment were extracted. The durability evaluation indexes and detection methods of concrete bridges in the specification were systematically sorted out. On this basis, the durability evaluation index system of concrete bridges in salt-frozen environment was established. The warning thresholds and limit thresholds of various detection indexes were proposed. The results show that the typical diseases of concrete bridges in salt-frozen environment are concrete spalling and steel corrosionof beams and piers, and show significant spatial distribution characteristics. The salt-frozen diseases of concrete bridges are more serious in northern cold and severe cold regions, especially in coastal and saline soil areas. The performance evolution of materials in salt-frozen environment can be roughly divided into initial stage, development stage and acceleration stage. The degradation of bearing capacity of concrete members in each stage is caused by the mechanical properties of concrete and steel bars, as well as the decrease of bonding performance between them. The factors affecting the performance degradation of materials and concrete members can be attributed to water-binder ratio, additive material, air entraining agent, protective layer thickness, steel bar type, loading state and initial cracks. The performance degradation of a concrete bridge is mainly manifested in the performance degradation of its key concrete members, but the evolution of its service status is significantly related to the three levels of material, component and structure through stress or stress state. The durability indexes in the specification can be divided into four categories, material properties, concrete damage, chloride ion erosion and steel corrosion. The established durability evaluation index system fully considers the use frequency and detectability of the index, and can fully reflect the typical disease characteristics of concrete bridges under salt-frozen environment. In the future, the research on the performance evolution of concrete members under the coupling of fatigue load and salt freezing cycle should be further carried out. At the same time, based on big data and machine learning technology, a theoretical and data-driven service state evolution model of concrete bridges in salt frozen environment should be established. Furthermore, combined with more in-depth theoretical research and advanced technology, a comprehensive evaluation index and a more accurate and efficient detection method should be proposed.12 tabs, 12 figs, 86 refs.

参考文献/References:

[1] 杨全兵,黄士元.对混凝土结构抗冻融及盐冻侵蚀耐久性设计的建议[C]//同济大学.混凝土结构耐久性设计与施工论文集.北京:中国建筑工业出版社,2004:53-65.
YANG Quan-bing,HUANG Shi-yuan.Suggestions on the durability design of concrete structures against freeze-thaw and salt-freeze erosion[C]// Tongji University.Proceedings of durability Design and Construction of Concrete Structures.Beijing:China Building Industry Press,2004:53-65.
[2]张云清,余红发,孙 伟,等.城市混凝土桥梁盐冻病害调查与研究[J].建筑材料学报,2012,15(5):665-669,689.
ZHANG Yun-qing,YU Hong-fa,SUN Wei,et al.Investigation and study of durability of bridge under salt scaling[J].Journal of Building Materials,2012,15(5):665-669,689.
[3]余红发,孙 伟,王甲春,等.盐湖地区混凝土的长期腐蚀产物与腐蚀机理[J].硅酸盐学报,2003,31(5):434-440.
YU Hong-fa,SUN Wei,WANG Jia-chun,et al.On attack product and corrosion mechanism of ordinarily concrete after long-term exposure to salt lakes[J].Journal of the Chinese Ceramic Society,2003,31(5):434-440.
[4]SCHERER G W.Freezing gels[J].Journal of Non-Crystalline Solids,1993,155(1):1-25.
[5]杨全兵.混凝土盐冻破坏机理(Ⅰ):毛细管饱水度和结冰压[J].建筑材料学报,2007,10(5):522-527.
YANG Quan-bing.Mechanisms of deicer-frost scaling of concrete(Ⅰ):Capillary-uptake degree of saturation and ice-formation pressure[J].Journal of Building Materials,2007,10(5):522-527.
[6]VALENZA J J,SCHERER G W.Mechanism for salt scaling of a cementitious surface[J].Materials and Structures,2007,40(3):259-268.
[7]金伟良.氯盐环境下混凝土结构耐久性理论与设计方法[M].北京:科学出版社,2011.
JIN Wei-liang.Durability theory and design method of concrete structure in chloride environment[M].Beijing:Science Press,2011.
[8]杨海成,胡正涛,于 方,等.海水环境粉煤灰混凝土结构耐久性现场检测与评估分析[J].海洋工程,2019,37(2):104-111.
YANG Hai-cheng,HU Zheng-tao,YU Fang,et al.Field test and evaluation analysis on durability of fly ash concrete structures in seawater environment[J].The Ocean Engineering,2019,37(2):104-111.
[9]许 梅,麻海燕,余红发,等.大连港服役50年混凝土的力学性能与耐久性[J].材料科学与工程学报,2018,36(3):470-477.
XU Mei,MA Hai-yan,YU Hong-fa,et al.Mechanical properties and durability of wharf concreteafter 50 years' service in Dalian Port[J].Journal of Materials Science andEngineering,2018,36(3):470-477.
[10]SONG Z P,REN S B,YUAN C F.The damage test research and durability predict ofSonghuajiang highway bridge with freeze-thaw condition[J].Applied Mechanics andMaterials,2011,71-78:2783-2786.
[11]赵宇琴,徐湘田,张洪伟,等.内蒙古岛状多年冻土区公路冻害特征研究[J].内蒙古工业大学学报(自然科学版),2023,42(6):542-548.
ZHAO Yu-qin,XU Xiang-tian,ZHANG Hong-wei,et al.Research on frost damage characteristics ofhighways in patchy permafrost region of Inner Mongolia[J].Journal of Inner MongoliaUniversity of Technology(Natural Science Edition),2023,42(6):542-548.
[12]王 瑛,刘俊芳.交通荷载作用下高温冻土动弹性模量影响因素研究[J].内蒙古工业大学学报(自然科学版),2023,42(2):174-177.
WANG Ying,LIU Jun-fang.Study on influence factors of dynamic elastic modulus of high temperature frozen soil under traffic load[J].Journal of Inner Mongolia University ofTechnology(Natural Science Edition),2023,42(2):174-177.
[13]兰素恋,张红日,李红明.硫酸盐侵蚀下改性钢渣骨料混凝土性能研究[J].长沙理工大学学报(自然科学版),2023,20(5):115-125.
LAN Su-lian,ZHANG Hong-ri,LI Hong-ming.Study on the properties of modified steel slagaggregate concrete under sulfate erosion[J].Journal of Changsha University of Science andTechnology(Natural Science),2023,20(5):115-125.
[14]许耘嘉.白城地区盐渍土工程特性的试验研究[D].长春:吉林大学,2019.
XU Yun-jia.Experimental research on engineering characteristics of saline soil in Baicheng area[D].Changchun:Jilin University,2019.
[15]陈宗芳.吉林西部盐渍土冻结温度预测及水盐迁移规律研究[D].长春:吉林大学,2020.
CHEN Zong-fang.Study on freezing temperature prediction and water-salt migration of saline soil in western Jilin[D].Changchun:Jilin University,2020.
[16]WU H R,LYU Q F,JIN W L.Durability related environmental zonation and design methodology for marine RC structures[J].Journal of South University(EnglishEdition),2018,34(1):78-86.
[17]杨全兵.冻融循环条件下氯化钠浓度对混凝土内部饱水度的影响[J].硅酸盐学报,2007,35(1):96-100.
YANG Quan-bing.Effects of sodium chloride concentration on saturation degree in concrete under freezing-thawing cycles[J].Journal of the Chinese Ceramic Society,2007,35(1):96-100.
[18]贡金鑫,何世饮,郭育霞.盐环境中冻融循环对钢筋与混凝土粘结性能影响[J].大连理工大学学报,2005,45(3):405-409.
GONG Jin-xin,HE Shi-yin,GUO Yu-xia.Influence of freezing and thawing cycles on bond characteristics of steel bar and concrete in salt environment[J].Journal of Dalian University of Technology,2005,45(3):405-409.
[19]冀晓东.冻融后混凝土力学性能及钢筋混凝土粘结性能的研究[D].大连:大连理工大学,2007.
JI Xiao-dong.The experimental study and theoretical analysis on the mechanical performance ofconcrete and bond behaviour between concrete and steel bar after freezing andthawing[D].Dalian:Dalian University of Technology,2007.
[20]ZHANG P,YUAN C G,VOGEL M,et al.Steel reinforcement corrosion in concrete undercombined actions:The role of freeze-thaw cycles,chloride ingress,and surface impregnation[J].Construction and Building Materials,2017,148:113-121.
[21]JIANG W Q,SHEN X H,XIA J,et al.A numerical study on chloride diffusion in freeze-thawaffected concrete[J].Construction and Building Materials,2018,179:553-565.
[22]JIANG W Q,SHEN X H,HONG S X,et al.Binding capacity and diffusivity of concretesubjected to freeze-thaw and chloride attack:A numerical study[J].OceanEngineering,2019,186:106093.
[23]万小梅,张同波,赵铁军,等.盐冻环境下混凝土的微结构和氯离子渗透性[J].建筑材料学报,2015,18(4):633-639.
WAN Xiao-mei,ZHANG Tong-bo,ZHAO Tie-jun,et al.Microstructures and chloride permeabilityof concretes under salt frost[J].Journal of Building Materials,2015,18(4):633-639.
[24]李林洁,刘清风.冻融循环下混凝土内部结冰及氯离子传输规律的数值研究[J].硅酸盐学报,2022,50(8):2245-2256.
LI Lin-jie,LIU Qing-feng.Numerical analysis on freezing rate and chloride transport in concrete subjected to freeze-thaw cycles[J].Journal of the Chinese Ceramic Society,2022,50(8):2245-2256.
[25]耿 娇,刁 波,陈圣刚.冻融与侵蚀作用下引气混凝土劣化微观机理[J].北京航空航天大学学报,2013,39(10):1392-1396.
GENG Jiao,DIAO Bo,CHEN Sheng-gang.Degradation mechanism of air-entrained concrete under alternative actions of freeze-thaw cycles and seawater immersion[J].Journal of BeijingUniversity of Aeronautics and Astronautics,2013,39(10):1392-1396.
[26]迟守慧,牛景轶,张 磊,等.混凝土在氯盐冻融过程中的pH值演变[J].混凝土,2014(4):28-30.
CHI Shou-hui,NIU Jing-yi,ZHANG Lei,et al.pH value of concrete subjected to freeze-thaw cycles in chloride solution[J].Concrete,2014(4):28-30.
[27]ZHANG S H,TIAN B,CHEN B F,et al.The influence of freeze-thaw cycles and corrosion onreinforced concrete and the relationship between the evolutions of the microstructure andmechanical properties[J].Materials,2022,15(18):6215.
[28]LU X C,GUAN B,CHEN B F,et al.The effect of freeze-thaw damage on corrosion inreinforced concrete[J].Advances in Materials Science and Engineering,2021,2021:9924869.
[29]郭寅川,申爱琴,王 剑,等.高寒地区桥梁混凝土抗氯离子渗透性能研究[J].建筑材料学报,2014,17(3):425-429,436.
GUO Yin-chuan,SHEN Ai-qin,WANG Jian,et al.Resistance to chloride ion permeation to concrete bridges in alpine regions[J].Journal of Building Materials,2014,17(3):425-429,436.
[30]冯 博,刘 青,钱永久.高性能混凝土在氯盐侵蚀和冻融循环作用下的耐久性分析[J].西南交通大学学报,2023,58(5):1083-1089.
FENG Bo,LIU Qing,QIAN Yong-jiu.Durability analysis of high-performance concrete underchloride salt erosion and freeze-thaw cycles[J].Journal of Southwest Jiaotong University,2023,58(5):1083-1089.
[31]GONG F Y,WANG Z,XIA J,et al.Coupled thermo-hydro-mechanical analysis of reinforcedconcrete beams under the effect of frost damage and sustained load[J].StructuralConcrete,2021,22(6):3430-3445.
[32]张 涛,朱 成.水泥-硅灰/粉煤灰体系强度、收缩性能与微观结构研究[J].硅酸盐通报,2022,41(3):903-912.
ZHANG Tao,ZHU Cheng.Strength,shrinkage performance and microstructure of cement-silicafume/fly ash system[J].Bulletin of the Chinese Ceramic Society,2022,41(3):903-912.
[33]马艳霞,聂思凡,郭佳庆.硫酸盐渍土地区粉煤灰混凝土力学性能试验研究[J].长沙理工大学学报(自然科学版),2022,19(1):64-72.
MA Yan-xia,NIE Si-fan,GUO JIA-qing.Experimental research on mechanical properties of fly ashconcrete in sulfate saline soil area[J].Journal of Changsha University of Science andTechnology(Natural Science),2022,19(1):64-72.
[34]吴泽媚,陈东丰,高培伟,等.氯盐和冻融双重作用对混凝土抗盐冻性的影响[J].硅酸盐通报,2011,30(6):1244-1248.
WU Ze-mei,CHEN Dong-feng,GAO Pei-wei,et al.Effects of chloride salt and freezing-thawing on deicer-scaling resistance of concrete[J].Bulletin of the Chinese Ceramic Society,2011,30(6):1244-1248.
[35]李 丹,吴建伟,张 鹏,等.引气混凝土抗氯离子渗透性及其微观孔结构[J].硅酸盐通报,2017,36(11):3797-3802.
LI Dan,WU Jian-wei,ZHANG Peng,et al.Resistance of chloride ion penetration and themicrostructure of air-entrained concrete[J].Bulletin of the Chinese CeramicSociety,2017,36(11):3797-3802.
[36]张家科,袁 捷,刘文博,等.基于工业扫描分析混凝土气泡结构与抗盐冻性能[J].同济大学学报(自然科学版),2018,46(1):53-59.
ZHANG Jia-ke,YUAN Jie,LIU Wen-bo,et al.Application of industrial computerized tomography to analyze air voids structure and salt scaling resistance of concrete[J].Journal of TongjiUniversity(Natural Science),2018,46(1):53-59.
[37]闫西乐,张 萍,秦鸿根,等.混凝土抗盐冻性能试验[J].水利水电科技进展,2016,36(2):42-45,94.
YAN Xi-le,ZHANG Ping,QIN Hong-gen,et al.Experimental study of frost-salt resistance of concrete[J].Advances in Science and Technology of WaterResources,2016,36(2):42-45,94.
[38]段桂珍.海洋环境下混凝土桥墩的冻融耐久性研究[D].上海:上海交通大学,2013.
DUAN Gui-zhen.The research on freez-thaw durability of concrete pier in the marineenvironment[D].Shanghai:Shanghai Jiao Tong University,2013.
[39]孙红运.冻融环境下钢筋混凝土桥墩抗压性能研究[D].上海:上海交通大学,2017.
SUN Hong-yun.Compressive behavior of reinforced concrete piers under freeze-thaw cycles[D].Shanghai:Shanghai Jiao Tong University,2017.
[40]CAO D F,ZHOU K F,ZHOU M,et al.Study on the shear behaviors of RC beams afterfreeze-thaw cycles[J].Applied Mechanics and Materials,2014,488/489:750-754.
[41]WANG Z,HAYASHIDA H,ZHANG D W,et al.Structural behaviors evaluation of RC beamunder frost damage:A methodology with meso-macro material/bond simulation andintegrating into structural analysis[J].Engineering Structures,2020,206:110162.
[42]DABAS M,MARTÍN-PÉREZ B,ALMANSOUR H.Combined effects of freeze-thaw andcorrosion on performance of RC structures:State-of-the-art review[J].Journal ofPerformance of Constructed Facilities,2021,35(5):03121002.
[43]LIU G R,DOU X X,QU F L,et al.Bond behavior of steel bars in concrete confined withstirrups under freeze-thaw cycles[J].Materials,2022,15(20):7152.
[44]WANG Z H,LI L,ZHANG Y X,et al.Bond-slip model considering freeze-thaw damage effectof concrete and its application[J].Engineering Structures,2019,201:109831.
[45]曹大富,马 钊,葛文杰,等.冻融循环作用后钢筋混凝土柱的偏心受压性能[J].东南大学学报(自然科学版),2014,44(1):188-193.
CAO Da-fu,MA Zhao,GE Wen-jie,et al.Eccentric compressive behaviors of RC columns after freeze-thaw cycles[J].Journal of Southeast University(Natural ScienceEdition),2014,44(1):188-193.
[46]PENG R X,QIU W L.Research on freeze-thaw damage to RC column based onincompatibility deformation from pores[J].Engineering Structures,2021,241:112462.
[47]ZAGHIAN S,MARTÍN-PÉREZ B,ALMANSOUR H,et al.Nonlinear finite element modelingof bridge piers under the combined effect of corrosion,freeze-thaw cycles,and service load[J].Structural Concrete,2023,24(4):5215-5232.
[48]ZHAO P,XU G,WANG Q,et al.Impact of sustained load on damage characteristics ofreinforced concrete beams under the combined action of salt freeze-thaw cycles andcorrosion[J].Construction and Building Materials,2021,273:121744.
[49]ZHU F Z,MA Z M,ZHAO T J.Influence of freeze-thaw damage on the steel corrosion andbond-slip behavior in the reinforced concrete[J].Advances in Materials Science andEngineering,2016,2016:9710678.
[50]孙 洋,刁 波.混合侵蚀与冻融环境下钢筋与混凝土粘结强度退化的试验研究[J].建筑结构学报,2007,28(增1):242-246.
SUN Yang,DIAO Bo.Experimental study on bond degradation between reinforcement andconcrete in multi aggressive and freeze-thaw environment[J].Journal of Building Structures,2007,28(S1):242-246.
[51]罗大明,牛荻涛,苏 丽.荷载与环境共同作用下混凝土耐久性研究进展[J].工程力学,2019,36(1):1-14,43.
LUO Da-ming,NIU Di-tao,SU Li.Research progress on durability of stressed concrete under environmental actions[J].Engineering Mechanics,2019,36(1):1-14,43.
[52]刁 波,孙 洋,马 彬.混合侵蚀和冻融交替作用下持续承载钢筋混凝土梁试验[J].建筑结构学报,2009,30(增2):281-286.
DIAO Bo,SUN Yang,MA Lin.Experiment of persistent loading rein forced concrete beam sunder alternative actions of a mixed aggressive solution and freeze-thaw cycles[J].Journal of Building Structures,2009,30(S2):281-286.
[53]DUAN A,LI Z Y,ZHANG W C,et al.Flexural behaviour of reinforced concrete beams under freeze-thaw cycles and sustained load[J].Structure and Infrastructure Engineering,2017,13(10):1350-1358.
[54]熊建波,苏达根,黎鹏平,等.弯曲荷载下浪溅区混凝土中氯离子的扩散规律[J].华南理工大学学报(自然科学版),2015,43(2):127-132,138.
XIONG Jian-bo,SU Da-gen,LI Peng-ping,et al.Flexural load-affected diffusion rules of chloridethrough concrete in splash zone[J].Journal of South China University of Technology(Natural Science Edition),2015,43(2):127-132,138.
[55]KOSIOR-KAZBERUK M,BERKOWSKI P.Surface scaling resistance of concrete subjectedto freeze-thaw cycles and sustained load[J].Procedia Engineering,2017,172:513-520.
[56]刘建忠,孙 伟,缪昌文,等.弯曲荷载与盐溶液复合作用下混凝土冻融损伤[J].东南大学学报(自然科学版),2006,36(增2):243-247.
LIU Jian-zhong,SUN Wei,MIU Chang-wen,et al.Freeze-thaw damage of concrete under flexural load and salt solution[J].Journal of Southeast University(Natural Science Edition),2006,36(S2):243-247.
[57]王阵地,姚 燕,王 玲.冻融循环-氯盐侵蚀-荷载耦合作用下混凝土中钢筋的锈蚀行为[J].硅酸盐学报,2011,39(6):1022-1027.
WANG Zhen-di,YAO Yan,WANG Ling.Corrosion behavior of steel bar embedded in concrete subject to freeze-thaw cycles-chloride attack-flexural load[J].Journal of the Chinese Ceramic Society,2011,39(6):1022-1027.
[58]叶 林.盐蚀及冻融循环作用下持载钢筋混凝土轴心受压承载力的损伤研究[D].长春:长春工程学院,2020.
YE Lin.Study on the damage of load bearing reinforcement concrete under axial compressioncapacity coupled effects of salt corrosion and freeze-thaw cycles[D].Changchun:Changchun Institute of Technology,2020.
[59]WU J Q,FAYE P N,ZHANG W M,et al.Chloride diffusivity and service life prediction of RC columns with sustained load under chloride environment[J].Construction and Building Materials,2018,158:97-107.
[60]SHEN B,YE Y H,DIAO B,et al.Mechanical performance and chloride diffusivity of cracked RC specimens exposed to freeze-thaw cycles and intermittent immersion in seawater[J].Advances in Materials Science and Engineering,2016,2016:5973467.
[61]ZAGHIAN S,MARTÍN-PÉREZ B,ALMANSOUR H.Nonlinear finite element modeling ofthe impact of reinforcement corrosion on bridge piers under concentric loads[J].StructuralConcrete,2022,23(1):138-153.
[62]MA Z M,ZHU F Z,BA G Z.Effects of freeze-thaw damage on the bond behavior of concreteand enhancing measures[J].Construction and Building Materials,2019,196:375-385.
[63]马昆林,王中志,龙广成,等.动荷载-水-冻融共同作用下混凝土宏观裂缝扩展与演变的研究进展[J].材料导报,2021,35(19):19091-19098.
MA Kun-lin,WANG Zhong-zhi,LONG Guang-cheng,et al.Propagation and evolution of macroscopic crack of concrete under dynamic load-water-freeze-thaw action:A review[J].Materials Reports,2021,35(19):19091-19098.
[64]YIN T Y,ZHU W Q,XU B,et al.Deterioration law of flexural performance of RC beams withinitial cracks under alternating action of salt freeze-thaw cycles and fatigue[J].Constructionand Building Materials,2023,409:134052.
[65]GU C P,YE G,SUN W.A review of the chloride transport properties of cracked concrete:experiments and simulations[J].Journal of Zhejiang University:Science A,2015,16(2):81-92.
[66]黄俊博,宁宝宽,李明烁,等.既有裂缝混凝土的冻融劣化及损伤特性分析[J].工业建筑,2020,50(1):142-147.
HUANG Jun-bo,NING Bao-kuan,LI Ming-shuo,et al.Analysis of freeze-thaw deterioration and damage characteristics of existing cracked concrete[J].Industrial Construction,2020,50(1):142-147.
[67]CHENG Y C,ZHANG Y W,JIAO Y B,et al.Quantitative analysis of concrete property under effects of crack,freeze-thaw and carbonation[J].Construction and Building Materials,2016,129:106-115.
[68]陈有亮,刘明亮,蒋立浩.含宏观裂纹混凝土冻融的力学性能试验研究[J].土木工程学报,2011,44(增2):230-233.
CHEN You-liang,LIU Ming-liang,JIANG Li-hao.Experimental study on mechanical properties of concrete with cracks after freeze-thaw cycles[J].China Civil Engineering Journal,2011,44(S2):230-233.
[69]LIU G Y,MU S,CAI J S,et al.Influence of crack on concrete damage in salt-freezing environment[J].Advances in Materials Science and Engineering,2021,2021:5543286.
[70]WANG H,HE S Q,FEI C H.Deterioration performance of damaged concrete beams under freezing-thawing cycle and chloride environment in coastal cities[J].Journal of Coastal Research,2019,83(S1):295.
[71]SHI J R,ZHU W Q,ZHANG L H,et al.Deterioration laws of static and fatigue bond performance between rebar and concrete with initial cracks under salt-freeze conditions[J].Construction and Building Materials,2024,452:138754.
[72]MIA M M,KAMESHWAR S.Machine learning approach for predicting bridge components' condition ratings[J].Frontiers in Built Environment,2023,9:1254269.
[73]HANJARI K Z,UTGENANNT P,LUNDGREN K.Experimental study of the material and bond properties of frost-damaged concrete[J].Cement and ConcreteResearch,2011,41(3):244-254.
[74]贺拴海,赵祥模,马 建,等.公路桥梁检测及评价技术综述[J].中国公路学报,2017,30(11):63-80.
HE Shuan-hai,ZHAO Xiang-mo,MA Jian,et al.Review of highway bridge inspection and condition assessment[J].China Journal of Highway and Transport,2017,30(11):63-80.
[75]关 虓,牛荻涛,肖前慧.考虑残余强度修正的混凝土冻融损伤层及轴心受压模型研究[J].铁道学报,2021,43(3):175-182.
GUAN Xiao,NIU Di-tao,XIAO Qian-hui.Study on concrete freezing-thawing damage layer considering residual strength correction and constitutive model under axial compression[J].Journal of the China Railway Society,2021,43(3):175-182.
[76]朱红光,易 成,孙辅延,等.氯盐浓度对混凝土中氯离子渗透的影响规律[J].建筑材料学报,2016,19(4):725-729.
ZHU Hong-guang,YI Cheng,SUN Fu-yan,et al.Influence of chloride concentration on chloride ion penetration in concrete[J].Journal of Building Materials,2016,19(4):725-729.
[77]LIU S,DU M H,TIAN Y B,et al.Bond behavior of reinforced concrete consideringfreeze-thaw cycles and corrosion of stirrups[J].Materials,2021,14(16):4732.
[78]TAHERSHAMSI M,FERNANDEZ I,LUNDGREN K,et al.Investigating correlations betweencrack width,corrosion level and anchorage capacity[J].Structure and InfrastructureEngineering,2017,13(10):1294-1307.
[79]郝 伟,魏雪萍.基于灰色关联度的高寒地区混凝土梁桥耐久性评估[J].安全与环境学报,2021,21(5):1889-1897.
HAO Wei,WEI Xue-ping.On the durability evaluation of the concrete beam bridges in alpine region based on the grey relation degree[J].Journal of Safety andEnvironment,2021,21(5):1889-1897.
[80]郝 伟,韦 丽,陶 泽,等.除冰盐与冻融环境下在役混凝土桥梁耐久性评估[J].安全与环境学报,2022,22(3):1207-1216.
HAO Wei,WEI Li,TAO Ze,et al.Durability evaluation of in-service concrete bridges under deicing salt and freeze-thaw environment[J].Journal of Safety andEnvironment,2022,22(3):1207-1216.
[81]张永良,郑大为.NRS下多证据融合的混凝土桥梁耐久性评估模型[J].中国安全科学学报,2023,33(1):169-176.
ZHANG Yong-liang,ZHENG Da-wei.Durability assessment model of concrete bridge based on multi-evidence fusion under NRS[J].China Safety Science Journal,2023,33(1):169-176.
[82]郑一峰,李 龙,房 玮,等.基于信息熵-未确知测度理论的公路桥梁耐久性评价[J].东北大学学报(自然科学版),2014,35(8):1206-1210,1216.
ZHENG Yi-feng,LI Long,FANG Wei,et al.Durability assessment of highway bridges based oninformation entropy and uncertainty measurement theory[J].Journal of NortheasternUniversity(Natural Science),2014,35(8):1206-1210,1216.
[83]张艺欣,郑山锁,荣先亮,等.考虑粘结滑移的冻融损伤纤维梁柱模型研究[J].工程力学,2020,37(9):208-216.
ZHANG Yin-xin,ZHENG Shan-suo,RONG Xian-liang,et al.Research on freeze-thaw damage model of fiber beam column considering reinforcement slip effect[J].Engineering Mechanics,2020,37(9):208-216.
[84]曹大富,富立志,杨忠伟,等.冻融循环作用下混凝土受压本构特征研究[J].混凝土,2013,16(1):17-23,32.
CAO Da-fu,FU Li-zhi,YANG Zhong-wei,et al.Study on constitutive relations of compressedconcrete subjected to action of freezing-thawing cycles[J].Concrete,2013,16(1):17-23,32.
[85]郭容邑.冻融环境下混凝土受弯构件的试验研究[D].扬州:扬州大学,2011.
GUO Rong-yi.Experimental research on reinforced concrete bending members under freeze-thaw cycles[D].Yangzhou:Yangzhou University,2011.
[86]杨忠伟.冻融循环作用下混凝土单轴受压性能试验研究[D].扬州:扬州大学,2010.
YANG Zhong-wei.Research about uniaxial compression performance of concrete under freeze-thaw cycles[D].Yangzhou:Yangzhou University,2010.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):44.

备注/Memo

备注/Memo:
收稿日期:2024-08-28
基金项目:国家重点研发计划项目(2021YFB2601000); 中央高校基本科研业务费专项资金项目(300102214916)
作者简介:朱伟庆(1987-),男,湖南娄底人,教授,博士研究生导师,E-mail:zhuweiqing@chd.edu.cn。
更新日期/Last Update: 2025-02-25