[1]樊 伟,孙纯杰,马凌飞,等.氯盐腐蚀和多次冲磨耦合作用下超高性能混凝土抗冲磨性能影响[J].长安大学学报(自然科学版),2025,45(01):50-59.[doi:10.19721/j.cnki.1671-8879.2025.01.005]
 FAN Wei,SUN Chun-jie,MA Ling-fei,et al.Influence of anti-abrasion performance of ultra-high performance concrete under coupling effect of chloride salt corrosion and multiple abrasion[J].Journal of Chang’an University (Natural Science Edition),2025,45(01):50-59.[doi:10.19721/j.cnki.1671-8879.2025.01.005]
点击复制

氯盐腐蚀和多次冲磨耦合作用下超高性能混凝土抗冲磨性能影响()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年01期
页码:
50-59
栏目:
桥梁与隧道工程
出版日期:
2025-02-28

文章信息/Info

Title:
Influence of anti-abrasion performance of ultra-high performance concrete under coupling effect of chloride salt corrosion and multiple abrasion
文章编号:
1671-8879(2025)01-0050-10
作者:
樊 伟123孙纯杰123马凌飞123朱张豪1
(1. 湖南大学 土木工程学院,湖南 长沙 410082; 2. 湖南大学 风工程与桥梁工程湖南省重点实验室,湖南 长沙 410082; 3. 湖南大学 桥梁工程安全与韧性全国重点实验室,湖南 长沙 410082)
Author(s):
FAN Wei123 SUN Chun-jie123 MA Ling-fei123 ZHU Zhang-hao1
(1. School of Civil Engineering, Hunan University, Changsha 410082, Hunan, China; 2. Key Laboratory for Wind and Bridge Engineering of Hunan Province, Hunan University, Changsha 410082, Hunan, China; 3. State Key Laboratory of Bridge Engineering Safety and Resilience,Hunan University, Changsha 410082, Hunan, China)
关键词:
桥梁工程 超高性能混凝土 试验研究 多次冲磨 抗冲磨性能 氯盐腐蚀
Keywords:
bridge engineering ultra-high performance concrete experimental reasearch multiple abrasion anti-abrasion performance chloride salt corrosion
分类号:
U441
DOI:
10.19721/j.cnki.1671-8879.2025.01.005
文献标志码:
A
摘要:
针对山区桥墩存在多次冲磨及伴生的腐蚀问题特点,开展氯盐腐蚀和多次冲磨耦合作用下超高性能混凝土(UHPC)和普通混凝土性能试验研究。首先,利用氯盐溶液对UHPC和普通混凝土进行腐蚀,探讨氯盐腐蚀下UHPC和普通混凝土的力学性能; 然后,通过水下钢球法研究UHPC和普通混凝土的抗冲磨性能,对比UHPC在单次冲磨和多次“腐蚀-冲磨”作用下的抗冲磨性能,揭示不同冲磨频率下UHPC的抗冲磨性能变化规律; 最后,建立不同冲磨频率下UHPC质量保有量和冲磨时间以及冲磨频率的关系函数,进而对试验数据进行验证。结果表明:经过单次冲磨作用后,氯盐腐蚀28 d的UHPC抗冲磨强度是未经氯盐腐蚀普通混凝土抗冲磨强度的5.97倍; UHPC经过4次“腐蚀-冲磨”循环作用的抗冲磨强度仍为未经氯盐腐蚀普通混凝土抗冲磨强度的2.94倍,说明了UHPC相比普通混凝土具有优异的抗冲磨性能; 在相同氯盐腐蚀条件下,相比单次冲磨作用,多次“腐蚀-冲磨”作用会导致UHPC质量损失增加506.62%,说明了基于单次冲磨试验所得到的性能评估可能会导致高估材料的抗冲磨性能,使设计偏于不安全。提出的多次“腐蚀-冲磨”试验与分析方法将推动更为合理地评估桥墩等构件抗冲磨性能,克服传统单次冲磨试验可能导致材料抗冲磨性能被高估的不足。
Abstract:
To explore the characteristics of multiple abrasion and accompanying corrosion issues in existingbridge piers in mountainous areas, the performance tests were conducted on ultra-high performance concrete(UHPC)and ordinary concrete under the combined effects of chloride salt corrosion and multiple abrasion.Firstly, UHPC and normal concrete were corroded by chlorine salt solution, and the mechanical properties ofUHPC and normal concrete under chlorine salt corrosion were investigated. Then, the anti-abrasionperformances of UHPC and normal concrete were investigated by underwater steel ball method, the anti-abrasion performances of UHPC under single abrasion and multiple corrosion-abrasion cycles were compared, and the variation patterns of UHPC's anti-abrasion performances under different abrasion frequencies wererevealed. Finally, the function related to the massretention of UHPC, abrasion time, and abrasion frequency under the different abrasion frequencies wasestablished, and the experimental data were verified. The results show that for single abrasion, the anti-abrasion strength of UHPC after chloride saltcorrosion for 28 days is 5.97 times greater than that of ordinary concrete without chloride salt corrosion, theanti-abrasion strength of UHPC after four cycles of corrosion-abrasion remains 2.94 times higher than that ofordinary concrete without chloride salt corrosion, demonstrating that UHPC has excellent anti-abrasionperformance compared to ordinary concrete. Under the same chloride salt corrosion conditions, it is found thatmultiple corrosion-abrasion cycles lead to a 506.62% increase in the mass loss of UHPC compared to singleabrasion, indicating that performance assessments based on single abrasion tests may overestimate the anti-abrasion performances of the material, and make the designs unsafe. The multiple corrosion-abrasion test and analysismethods proposed in this paper are expected to promote more reasonable evaluations of the anti-abrasionperformances of structural components such as bridge piers, overcoming the shortcomings of traditional singleabrasion tests that may lead to overestimation of material anti-abrasion performances.5 tabs, 10 figs, 30 refs.

参考文献/References:

[1] HONG Y,WANG J P,LI D Q,et al.Statisticaland probabilistic analyses of impact pressure anddischarge of debris flow from 139 events during 1961and 2000 at Jiangjia Ravine,China[J].EngineeringGeology,2015,187:122-134.
[2]DENG L,WANG W,YU Y.State-of-the-artreview on the causes and mechanisms of bridgecollapse[J].Journal of Performance of ConstructedFacilities,2016,30(2):04015005.
[3]谢 洪,钟敦伦,韦方强,等.我国山区城镇泥石流灾害及其成因[J].山地学报,2006,24(1):79-87.
XIE Hong,ZHONG Dun-lun,WEI Fang-qiang,et al.Debris flow hazards and their formationcauses in mountain urban area of China[J].Journalof Mountain Science,2006,24(1):79-87.
[4]王林峰,唐红梅,陈洪凯.泥石流区桥墩损毁机制与控制研究[J].防灾减灾工程学报,2012,32(3):353-358.
WANG Lin-feng,TANG Hong-mei,CHENHong-kai.Study on the mechanism of pier'sdestruction and control in the active debris flowregions[J].Journal of Disaster Prevention andMitigation Engineering,2012,32(3):353-358.
[5]WU Z M,SHI C J,HE W,et al.Effects ofsteel fiber content and shape on mechanical propertiesof ultra high performance concrete[J].Constructionand Building Materials,2016,103:8-14.
[6]FAN W,XU X,ZHANG Z Y,et al.Performance and sensitivity analysis of UHPFRC-strengthened bridge columns subjected to vehiclecollisions[J].Engineering Structures,2018,173:251-268.
[7]GUO W,FAN W,SHAO X D,et al.Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impactsimulations[J].Composite Structures,2018,185:307-326.
[8]PYO S,ABATE S Y,KIM H K.Abrasionresistance of ultra high performance concreteincorporating coarser aggregate[J].Construction andBuilding Materials,2018,165:11-16.
[9]LIU Y L,WEI Y.Abrasion resistance of ultra-high performance concrete with coarse aggregate[J].Materials and Structures,2021,54:157.
[10]SCHEYDT J,HEROLD G,MULLER H S.Longterm behaviour of ultra high performance concreteunder the attack of chlorides and agressive waters[C]//Ultra high performance concrete(UHPC).Proceedingsof the second International Symposium on Ultra HighPerformance Concrete.Kassel:Kassel University Press,2008:231-238.
[11]PYO S,TAFESSE M,KIM H,et al.Effect ofchloride content on mechanical properties of ultra highperformance concrete[J].Cement and ConcreteComposites,2017,84:175-187.
[12]WANG S J,GUO X L,GUO Z W,et al.Direct characterization of steel fibre corrosion in pre-cracked ultra-high performance concrete(UHPC)withdifferent crack widths[J].Construction and BuildingMaterials,2022,315:125769.
[13]刘 强.超高强高耐磨混凝土材料研究[D].长沙:湖南大学,2009.
LIU Qiang.Research of ultra-high strength andhigh wear-resistant concrete material[D].Changsha:Hunan University,2009.
[14]ZHAO S J,VAN DAM E,LANGE D,et al.Abrasion resistance and nanoscratch behavior of anultra-high performance concrete[J].Journal ofMaterials in Civil Engineering,2017,29(2):04016212.
[15]WU F,CHEN X Q,CHEN J G.Abrasionresistance of concrete under coupled debris flow andfreeze-thaw cycles[J].Wear,2023:524-525.
[16]刘福财,肖 敏,黄贺明.超高性能混凝土抗冲磨性能研究及应用[J].混凝土世界,2020(6):88-92.
LIU Fu-cai,XIAO Min,HUANG He-ming.Research and application of lmpact and wearresistance of ultra-high performance concrete[J].China Concrete,2020(6):88-92.
[17]肖 敏,郭文瑛,汪永剑,等.冻融循环与海水腐蚀对超高性能混凝土抗冲磨性能的影响研究[J].混凝土世界,2022(7):20-24.
XIAO Min,GUO Wen-ying,WANG Yong-jian,et al.Influence of freeze-thaw cycles and sea watercorrosion on the abrasion resistance of uitra-highperformance concrete[J].China Conrete,2022(7):20-24.
[18]CHINDAPRASIRT P,KROEHONG W,DAMRONGWIRIYANUPAP N,et al.Mechanical properties,chloride resistance and microstructure of Portland flyash cement concrete containing high volume bagasseash[J].Journal of Building Engineering,2020,31:101415.
[19]DONG L,YANG Y K,LIU Z X,et al.Effect ofchloride ion migration behaviour on the microstructureand mechanical properties of ultra-high performanceconcrete:A review[J].Journal of BuildingEngineering,2024,82:108233.
[20]GB/T 31387—2015,活性粉末混凝土[S].
GB/T 31387—2015,Reactive powder concrete[S].
[21]NF P 18-470,Concrete-ultra-highperformance fibre-reinforced concrete-specifications,performance,production andconformity[S].
[22]SL/T 352—2020,水工混凝土试验规程[S].
SL/T 352—2020,Test code for hydraulic concrete[S].
[23]ZHANG G H,LI Z L,ZHANG L F,et al.Experimental research on drying control conditionwith minimal effect on concrete strength[J].Construction and Building Materials,2017,135:194-202.
[24]DU X Q,LI Z L,HAN J J,et al.Effect ofdifferent humidity-controlling modes onmicrostructure and compressive behavior of ordinaryconcrete[J].Journal of Materials in Civil Engineering,2020,32(1):04019337.
[25]仲从春.超高性能混凝土的抗冲磨性能研究[D].乌鲁木齐:新疆大学,2018.
ZHONG Cong-chun.Research on anti-abrasionperformance of ultra-high performance concrete[D].Urumqi:Xinjiang University,2018.
[26]SCOTT B D,SAFIUDDIN M.Abrasion resistanceof concrete-design,construction and case study[J].Concrete Research Letters,2015,6(3):136-148.
[27]何 真.混凝土磨蚀冲蚀与其它环境因素的耦合作用[J].水利学报,2015,46(2):138-145.
HE Zhen.Interactions between severeenvironment and concrete resistance to abrasion anderosion[J].Journal of Hydraulic Engineering,2015,46(2):138-145.
[28]丁庆军,李进辉,耿雪飞,等.橡胶颗粒掺杂提高超高性能混凝土的抗冲磨性能及其机理[J].硅酸盐学报,2020,48(10):1636-1643.
DING Qing-jun,LI Jin-hui,GENG Xue-fei,et al.Mechanism of enhancing anti-abrasion performanceof ultrahigh-performance conerete via rubberparticles[J].Journal of the Chinese Ceramic Society,2020,48(10):1636-1643.
[29]邱 轩.超高性能混凝土抗冲磨性能研究[D].郑州:中原工学院,2023.
QIU Xuan.Research on abrasion resistance ofultra-high-performance concrete[D].Zhengzhou:Zhongyuan University of Technology,2023.
[30]LI J Q,WU Z M,SHI C J,et al.Durability ofultra-high performance concrete-a review[J].Construction and Building Materials,2020,255:119296.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):44.
[11]袁 明,吴晓娟,颜东煌,等.加载速率对钢纤维与超高性能混凝土黏结性能的影响[J].长安大学学报(自然科学版),2022,42(5):62.[doi:10.19721/j.cnki.1671-8879.2022.05.007]
 YUAN Ming,WU Xiao-juan,YAN Dong-huang,et al.Effect of loading rate on bond properties of steel fiber and ultra-high performance concrete[J].Journal of Chang’an University (Natural Science Edition),2022,42(01):62.[doi:10.19721/j.cnki.1671-8879.2022.05.007]
[12]袁 晟,颜东煌,袁 明,等.养护方式和早龄期对钢纤维-UHPC基体界面黏结性能的影响[J].长安大学学报(自然科学版),2022,42(6):133.[doi:10.19721/j.cnki.1671-8879.2022.06.013]
 YUAN Sheng,YAN Dong-huang,YUAN Ming,et al.Effect of curing method and early age on interfacialbond properties of steel fiber-UHPC matrix[J].Journal of Chang’an University (Natural Science Edition),2022,42(01):133.[doi:10.19721/j.cnki.1671-8879.2022.06.013]
[13]袁 明,邓俊杰,刘 昀,等.超高性能混凝土断裂全过程声发射分形特征及损伤机理[J].长安大学学报(自然科学版),2024,44(3):93.[doi:10.19721/j.cnki.1671-8879.2024.03.008]
 YUAN Ming,DENG Jun-jie,LIU Yun,et al.Fractal characteristics and damage mechanism of acoustic emission during whole fracture process of ultra-high performance concrete[J].Journal of Chang’an University (Natural Science Edition),2024,44(01):93.[doi:10.19721/j.cnki.1671-8879.2024.03.008]

备注/Memo

备注/Memo:
收稿日期:2024-09-12
基金项目:国家自然科学基金项目(51978258); 湖南省重点研发计划项目(2021SK2052); 广西自然科学基金项目(2021GXNSFBA075034)
作者简介:樊 伟(1985-),男,江西南昌人,教授,博士研究生导师,E-mail:wfan@hnu.edu.cn。
更新日期/Last Update: 2025-02-25