参考文献/References:
[1] 尹国军.沥青路面使用性能评价及预测研究[J].四川建材,2024,50(1):174-175,178.
YIN Guo-jun.Research on evaluation and prediction of asphalt pavement performance[J].Sichuan Building Materials,2024,50(1):174-175,178.
[2]黄 东,尹雨阳,谢学斌,等.路基沉降预测的灰色自记忆模型[J].工业建筑,2023,53(2):569-572.
HUANG Dong,YIN Yu-yang,XIE Xue-bin,et al.Grey self-memory model for roadbed settlement prediction[J].Industrial Construction,2023,53(2):569-572.
[3]邓聚龙.灰色系统理论与计量未来学[J].未来与发展,1983(3):20-23.
DENG Ju-long.Grey system theory and quantitative futurology[J].Future and Development,1983(3):20-23.
[4]严世涛,唐忠国,邹一强.基于灰色理论的沥青路面使用性能衰变预测研究[J].西部交通科技,2020(2):17-21.
YAN Shi-tao,TANG Zhong-guo,ZOU Yi-qiang.Research on prediction of asphalt pavement performance decay based on grey theory[J].Western China Communication Science and Technology,2020(2):17-21.
[5]杨雨晴,胡庆国.永州市高速公路沥青路面使用性能预测研究[J].公路与汽运,2021(6):168-171,178.
YANG Yu-qing,HU Qing-guo.Research on performance prediction of asphalt pavement on Yongzhou Expressway[J].Highways and Automotive Applications,2021(6):168-171,178.
[6]于保华,高玉梅,杨婉怡,等.北京市京承高速沥青路面性能衰变规律分析[J].山东交通科技,2021(5):1-2,9.
YU Bao-hua,GAO Yu-mei,YANG Wan-yi,et al.Analysis on performance decay law of asphalt pavement in Beijing-Chengde Expressway[J].Shandong Transportation Science and Technology,2021(5):1-2,9.
[7]何志敏,孙晓磊,杨婉怡,等.北京市六环高速公路沥青路面性能预测模型及精度分析[J].市政技术,2020,38(6):34-36.
HE Zhi-min,SUN Xiao-lei,YANG Wan-yi,et al.Performance prediction model and accuracy analysis of asphalt pavement of Beijing Sixth Ring Expressway[J].Municipal Engineering Technology,2020,38(6):34-36.
[8]ABDULLAH N M,JA MAL K M,KARIM B M R U,et al.Cracking models for HMA overlay treatment of composite pavements in Louisiana[J].International Journal of Pavement Engineering,2020,22(14):1-12.
[9]丁世飞,孙玉婷,梁志贞,等.弱监督场景下的支持向量机算法综述[J].计算机学报,2024,47(5):987-1009.
DING Shi-fei,SUN Yu-ting,LIANG Zhi-zhen,et al.A review of support vector machine algorithms in weakly supervised scenarios[J].Journal of Computer Science and Technology,2024,47(5):987-1009.
[10]段哲政.一级公路沥青路面性能评价——以国道108省道汾屯线、东夏线为例[J].四川建材,2024,50(3):177-179.
DUAN Zhe-zheng.Performance evaluation of first-class highway asphalt pavement:Taking Fentun Line and Dongxia Line of National Highway 108 and Provincial Highway as examples[J].Sichuan Building Materials,2024,50(3):177-179.
[11]张丽娟,黄 晟,梅 诚,等.基于K最邻近算法的沥青路面使用性能预测[J].公路工程,2020,45(3):73-78,85.
ZHANG Li-juan,HUANG Sheng,MEI Cheng,et al.Asphalt pavement performance prediction based on K nearest neighbor algorithm[J].Highway Engineering,2020,45(3):73-78,85.
[12]张金喜,郭旺达,宋 波,等.基于随机森林的沥青路面性能预测[J].北京工业大学学报,2021,47(11):1256-1263.
ZHANG Jin-xi,GUO Wang-da,SONG Bo,et al.Asphalt pavement performance prediction based on random forest[J].Journal of Beijing University of Technology,2021,47(11):1256-1263.
[13]王笑风,毛海臻,杨 博,等.基于深度学习LSTM网络的沥青路面性能预测研究[J].公路交通科技(应用技术版),2020,16(8):4-7.
WANG Xiao-feng,MAO Hai-zhen,YANG Bo,et al.Research on asphalt pavement performance prediction based on deep learning LSTM network[J].Journal of Highway and Transportation Research and Development(Applied Technology Edition),2020,16(8):4-7.
[14]ABDELAZIZ N,ABD EL-HAKIM R T,EL-BADAWY S M,et al.International roughness index prediction model for flexible pavements[J].International Journal of Pavement Engineering,2020,21(1):88-99.
[15]JIYU X,MITSUYOSHI A,M I F D,et al.Reliability-based life-cycle cost design of asphalt pavement using artificial neural networks[J].Structure and Infrastructure Engineering,2021,17(6):872-886.
[16]WANG Z,GUO N,WANG S,et al.Prediction of highway asphalt pavement performance based on Markov chain and artificial neural network approach[J].The Journal of Supercomputing,2020,77(2):1-23.
[17]肖 磊,颜俊键,聂 文,等.基于组合预测模型的沥青路面养护方案规划[J].广东公路交通,2022,48(1):1-6,19.
XIAO Lei,YAN Jun-jian,NIE Wen,et al.Asphalt pavement maintenance program planning based on combined prediction model[J].Guangdong Highway Communications,2022,48(1):1-6,19.
[18]CAI L,WU F,LEI D.Pavement condition index prediction using fractional order GM(1,1)model[J].IEEJ Transactions on Electrical and Electronic Engineering,2021,16(8):1099-1103.
[19]ZHU Y,CHEN J,WANG K,et al.Research on performance prediction of highway asphalt pavement based on Grey-Markov model[J].Transportation Research Record,2022,2676(4):194-209.
[20]WANG X C,ZHAO J,LI Q Q,et al.A hybrid model for prediction in asphalt pavement performance based on support vector machine and grey relation analysis[J].Journal of Advanced Transportation,2020,2020(1):1-14.
[21]LI Z,ZHANG J,LIU T,et al.Using PSO-SVR algorithm to predict asphalt pavement performance[J].Journal of Performance of Constructed Facilities,2021,35(6):04021094.
[22]KARBALLAEEZADEH N,MOHAMMADZADEH D S,MOAZEMI D,et al.Smart structural health monitoring of flexible pavements using machine learning methods[J].Coatings,2020,10(11):1100.
[23]马子媛,李海莲,蔺望东.基于PCA-IPSO-RBF神经网络的沥青路面破损状况预测[J].大连理工大学学报,2022,62(2):197-205.
MA Zi-yuan,LI Hai-lian,LIN Wang-dong.Prediction of asphalt pavement damage condition based on PCA-IPSO-RBF neural network[J].Journal of Dalian University of Technology,2022,62(2):197-205.
[24]尚千里,田 波,李思李,等.沥青路面车辙LSTM-BPNN特征融合预测模型研究[J].中外公路,2021,41(4):70-75.
SHANG Qian-li,TIAN Bo,LI Si-li,et al.Research on LSTM-BPNN feature fusion prediction model for asphalt pavement rutting[J].Journal of China and Foreign Highway,2021,41(4):70-75.
[25]凌冲宇.基于多源数据的某高速公路沥青路面预养护决策研究[D].长沙:中南大学,2023.
LING Chong-yu.Research on pre-maintenance decision of asphalt pavement of a highway based on multi-source data[D].Changsha:Central South University,2023.
[26]裴莉莉.基于多源感知数据的沥青路面服役性能演变预测方法研究[D].西安:长安大学,2023.
PEI Li-li.Research on prediction method of asphalt pavement service performance evolution based on multi-source sensing data[D].Xi'an:Chang'an University,2023.
[27]孙 昕.高速公路路面性能预测模型可靠性及养护优化策略[D].贵阳:贵州大学,2024.
SUN Xin.Reliability of highway pavement performance prediction model and maintenance optimization strategy[D].Guiyang:Guizhou University,2024.
[28]KOOKJIN L,JAIDEEP R,COSMIN S.The predictive skill of convolutional neural networks models for disease forecasting[J].PloS One,2021,16(7):254-319.
[29]XIAOKE H,XIAOMIN Z,HONGFEI L,et al.Enhanced predictive modeling of hot rolling work roll wear using TCN-LSTM-Attention[J].The International Journal of Advanced Manufacturing Technology,2024,131(3/4):1335-1346.
[30]郭 玲,徐青山,郑 乐.基于TCN-GRU模型的短期负荷预测方法[J].电力工程技术,2021,40(3):66-71.
GUO Ling,XU Qing-shan,ZHENG Le.Short-term load forecasting method based on TCN-GRU model[J].Electric Power Engineering Technology,2021,40(3):66-71.
相似文献/References:
[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):1.