[1]傅 珍,王化云,侯英杰,等.石蜡微胶囊调温沥青及混合料性能[J].长安大学学报(自然科学版),2025,45(01):1-12.[doi:10.19721/j.cnki.1671-8879.2025.01.001]
 FU Zhen,WANG Hua-yun,HOU Ying-jie,et al.Performance of paraffin microcapsule temperature control asphalt and mixtures[J].Journal of Chang’an University (Natural Science Edition),2025,45(01):1-12.[doi:10.19721/j.cnki.1671-8879.2025.01.001]
点击复制

石蜡微胶囊调温沥青及混合料性能()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第45卷
期数:
2025年01期
页码:
1-12
栏目:
道路工程
出版日期:
2025-02-28

文章信息/Info

Title:
Performance of paraffin microcapsule temperature control asphalt and mixtures
文章编号:
1671-8879(2025)01-0001-12
作者:
傅 珍1王化云1侯英杰2马 峰2袁康博2
(1. 长安大学 材料科学与工程学院,陕西 西安 710064; 2. 长安大学 公路学院,陕西 西安 710064 )
Author(s):
FU Zhen1 WANG Hua-yun1 HOU Ying-jie2 MA Feng2 YUAN Kang-bo2
(1. School of Materials Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi, China; 2. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
道路工程 相变材料 试验研究 沥青及沥青混合料 路用性能 调温性能
Keywords:
road engineering phase change materials experimental research asphalt and asphalt mixtures road performance temperature regulation performance
分类号:
U414
DOI:
10.19721/j.cnki.1671-8879.2025.01.001
文献标志码:
A
摘要:
为减轻高温对沥青路面造成的破坏,并延长道路使用寿命,将微胶囊相变材料掺入沥青结合料和沥青混合料来调节温度。采用原位聚合法,以石蜡为核心材料、三聚氰胺-脲素-甲醛(MUF)为壁材制备石蜡@三聚氰胺-脲素-甲醛(SL@MUF)微胶囊。将微胶囊(掺量分别为3%、6%、9%、12%)掺入70#沥青和SBS改性沥青中,对相变调温沥青的针入度、软化点、黏度和调温能力进行评估。选择掺量为6%和9%的SBS调温沥青制备相变调温沥青混合料,并对其高温、低温、水稳定和调温性能进行研究。研究结果表明:添加SL@MUF微胶囊后,2种相变调温沥青的软化点和黏度均有所提高,而针入度降低; 相比70#沥青,SBS改性沥青受SL@MUF微胶囊的影响较小; SL@MUF微胶囊赋予沥青一定的潜热,使其具备储热能力; 掺量为12%的SL@MUF微胶囊分别使70-12调温沥青与SBS-12调温沥青获得9.402、11.308 J/g的相变焓; 随着SL@MUF微胶囊掺量的增加,相变调温沥青混合料的动态模量提高,弯曲劲度模量和最大弯拉应变降低; SL@MUF微胶囊会导致沥青混合料的冻融劈裂强度比和浸水残留稳定度略微降低; 调温试验证明,掺量为12%的SL@MUF微胶囊可以使70-12调温沥青与SBS-12调温沥青的温度分别降低2.0 ℃和1.9 ℃,与未掺加微胶囊的SBS改性沥青及其混合料相比,可延迟峰值到达时间分别为10、4 min,可在一定程度上达到调节路面温度的效果。
Abstract:
To mitigate the damage caused by high temperatures on asphalt pavements and extend the service life of roads, microcapsule phase change materials were added to asphalt binders and asphalt mixtures to regulate temperature. The paraffin@melamine-urea-formaldehyde(SL@MUF)microcapsules were prepared by in-situ polymerization, with paraffin as the core material and melamine-urea-formaldehyde(MUF)as the shell material. Microcapsules with different dosages(3%, 6%, 9%, and 12%)were added to 70# asphalt and SBS modified asphalt, and the penetration, softening point, viscosity, and temperature regulation capacity of the phase change temperature regulation asphalt were evaluated. SBS temperature regulation asphalt with 6% and 9% dosages were selected to prepare phase change temperature regulation asphalt mixtures, and their high-temperature, low-temperature, water stability, and temperature regulation properties were investigated. The research results indicate that the addition of SL@MUF microcapsules increase the softening point and viscosity of both types of phase change temperature regulation asphalt, while the penetration decreases. Compared with the 70# asphalt, SBS modified asphalt is less affected by SL@MUF microcapsules. SL@MUF microcapsules impart latent heat to the asphalt, giving it thermal storage capabilities. The microcapsules with the dosage of 12% result in phase change enthalpies of 9.402 J/g and 11.308 J/g for 70-12 temperature regulation asphalt and SBS-12 temperature regulation asphalt, respectively. As the SL@MUF microcapsules dosage increases, the dynamic modulus of the phase change temperature regulation asphalt mixtures increases, while the bending stiffness modulus and maximum bending strain decrease. SL@MUF microcapsules slightly reduce the freeze-thaw splitting tensile strength ratio and water immersion residual stability of the asphalt mixtures. Temperature regulation tests demonstrate that SL@MUF microcapsules with a dosage of 12% can lower the temperature of 70-12 temperature regulation asphalt and SBS-12 temperature regulation asphalt by 2.0 ℃ and 1.9 ℃, respectively. Compared with SBS modified asphalt and its mixture without microcapsules, the peak temperature arrival time is delayed by 10 and 4 minutes, respectively, achieving a certain degree of temperature regulation for the pavement.4 tabs, 14 figs, 27 refs.

参考文献/References:

[1] LI H B,CUI C Y,TEMITOPE A A,et al.Effect of SBS and crumb rubber on asphalt modification:A review of the properties and practical application[J].Journal of Traffic and Transportation Engineering(English Edition),2022,9(5):836-863.
[2]杨程程,柳 力,刘朝晖,等.基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J].材料导报,2024,38(6):280-286.
YANG Cheng-cheng, LIU Li, LIU Chao-hui et al.Study on the adhesion characteristics of silane coupling agent modified basalt fiber to asphalt based on molecular dynamics[J].Materials Reports,2024,38(6):280-286.
[3]洪 斌,王建翎,李添帅,等.再生路面用聚氨酯改性沥青改性机理与路用性能[J].中国公路学报,2023,36(12):275-288.
HONG Bin,WANG Jian-ling,LI Tian-shuai,et al.Modification mechanism and road performance of polyurethane-modified bitumen for reclaimed pavement[J].China Journal of Highway and Transport,2023,36(12):275-288.
[4]CHENG H L,LIU J N,SUN L J,et al.Fatigue behaviours of asphalt mixture at different temperatures in four-point bending and indirect tensile fatigue tests[J].Construction and Building Materials,2021,273:121675.
[5]丁 敏,汪 严,裘秋波,等.老化条件下聚丙烯纤维改性乳化沥青及其微表处混合料性能分析[J].大连理工大学学报,2024,64(2):204-212.
DING Min,WANG Yan,QIU Qiu-bo,et al.Performance analysis of polypropylene fiber modified emulsified asphalt and its mixture under aging condition[J].Journal of Dalian University of Technology,2024,64(2):204-212.
[6]王小庆,司 伟,马 骉,等.新型环氧树脂复合相变材料对沥青混合料调温性能影响[J].长安大学学报(自然科学版),2024,44(2):34-45.
WANG Xiao-qing,SI Wei,MA Biao,et al.Influence of epoxy resin composite phase change material on road and temperature regulation performance of asphalt mixture[J].Journal of Chang'an University(Natural Science Edition),2024,44(2):34-45.
[7]SI W,ZHOU X Y,MA B,et al.The mechanism of different thermoregulation types of composite shape-stabilized phase change materials used in asphalt pavement[J].Construction and Building Materials,2015,98:547-558.
[8]陈 俊,孙振浩,赵 成,等.相变沥青混凝土复合结构降温效果试验分析[J].吉林大学学报(工学版),2024,54(1):180-187.
CHEN Jun,SUN Zhen-hao,ZHAO Cheng,et al.Laboratory investigation on cooling effect of multi-layer phase change asphalt concrete[J].Journal of Jilin University(Engineering and Technology Edition),2024,54(1):180-187.
[9]ATHUKORALLAGE B,DISSANAYAKA T,SENADHEERA S,et al.Performance analysis of incorporating phase change materials in asphalt concrete pavements[J].Construction and Building Materials,2018,164:419-432.
[10]王小庆,马 骉,刘丰玮.微胶囊相变调温沥青混合料温度场研究[J].武汉理工大学学报(交通科学与工程版),2020,44(6):1020-1026.
WANG Xiao-qing,MA Biao,LIU Feng-wei.Study on temperature field of microcapsule phase change thermostatic asphalt mixture[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2020,44(6):1020-1026.
[11]WEI K,MA B,DUAN S Y.Preparation and properties of bitumen-modified polyurethane solid-solid phase change materials[J].Journal of Materials in Civil Engineering,2019,31(8):04019139.
[12]JIA M,SHA A M,JIANG W,et al.Laboratory evaluation of poly(ethylene glycol)for cooling of asphalt pavements[J].Construction and Building Materials,2021,273:121774.
[13]DAI J S,MA F,FU Z,et al.Applicability assessment of stearic acid/palmitic acid binary eutectic phase change material in cooling pavement[J].Renewable Energy,2021,175:748-759.
[14]DAI J S,MA F,FU Z,et al.Assessing the direct interaction of asphalt binder with stearic acid/palmitic acid binary eutectic phase change material[J].Construction and Building Materials,2022,320:126251.
[15]KAKAR M R,REFAA Z,BUENO M,et al.Investigating bitumen's direct interaction with Tetradecane as potential phase change material for low temperature applications[J].Road Materials and Pavement Design,2020,21(8):2356-2363.
[16]REN Y X,HAO P W.Modification mechanism and enhanced low-temperature performance of asphalt mixtures with graphene-modified phase-change microcapsules[J].Construction and Building Materials,2022,320,126301.
[17]ZHAO K,WANG J F,XIE H Q,et al.Microencapsulated phase change n-octadecane with high heat storage for application in building energy conservation[J].Applied Energy,2023,329:120284.
[18]GAO Y C,JIN J,XIAO T,et al.Study of temperature-adjustment asphalt mixtures based on silica-based composite phase change material and its simulation[J].Construction and Building Materials,2022,342:127871.
[19]CAI M,WANG X.Preparation and properties of phase change microcapsule wall modified by doped nano-TiO2[J].Mod Chem Ind(China),2018,38(6):106-109.
[20]HAN S J,CHEN Y P,LYU S Y,et al.Effects of processing conditions on the properties of paraffin/melamine-urea-formaldehyde microcapsules prepared by in situ polymerization[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,585:124046.
[21]袁康博.相变微胶囊的制备及其改性沥青路用性能研究[D].西安:长安大学,2023.
YUAN Kang-bo.Preparation of phase change microcapsule and its performance of asphalt pavement modification[D].Xi'an:Chang'an University,2023.
[22]于文艳,孟 琦,童浩然.微胶囊相变材料对砂浆热性能和力学性能的影响[J].建筑材料学报,2023,26(2):215-220.
YU Wen-yan,MENG Qi,TONG Hao-ran.Effect of microencapsulated phase change material on thermal and mechanical properties of mortar[J].Journal of Building Materials,2023,26(2):215-220.
[23]HOU Y J,MA F,FU Z,et al.Low-temperature aliphatic eutectic phase change materials for asphalt:Design and characterization[J].Construction and Building Materials,2024,414:134852.
[24]马 峰,袁康博,傅 珍,等.不同温拌剂对沥青混合料路用性能的影响[J].合肥工业大学学报(自然科学版),2021,44(11):1500-1505.
MA Feng,YUAN Kang-bo,FU Zhen,et al.Effect of different warm mix agents on road performance of asphalt mixture[J].Journal of Hefei University of Technology(Natural Science),2021,44(11):1500-1505.
[25]蔡昕辰,刘志彬,张 云,等.相变材料在道路工程中的应用研究进展[J].功能材料,2021,52(12):12013-12021.
CAI Xin-chen,LIU Zhi-bin,ZHANG Yun,et al.Research of application of phase change materials in road engineering:A review[J].Journal of Functional Materials,2021,52(12):12013-12021.
[26]周雪艳,马 骉,任宇铮,等.沥青路面用复合定形相变材料的路用性能研究[J].硅酸盐通报,2017,36(8):2743-2748,2786.
ZHOU Xue-yan,MA Biao,REN Yu-zheng,et al.Pavement performance of shape-stabilized phase change material for asphalt pavement[J].Bulletin of the Chinese Ceramic Society,2017,36(8):2743-2748,2786.
[27]李 霖,蔡喜韬,惠 嘉,等.微胶囊相变材料研究发展及在沥青混合料中的应用现状[J].化工新型材料,2022,50(8):292-296.
LI Lin,CAI Xi-tao,HUI Jia,et al.Research and development of MCPCM and its application in asphalt mixture[J].New Chemical Materials,2022,50(8):292-296.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(01):1.
[11]王小庆,司 伟,马 骉,等.新型环氧树脂复合相变材料对沥青混合料调温性能影响[J].长安大学学报(自然科学版),2024,44(2):34.[doi:10.19721/j.cnki.1671-8879.2024.02.004]
 WANG Xiao-qing,SI Wei,MA Biao,et al.Influence of epoxy resin composite phase change material on road and temperature regulation performance of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2024,44(01):34.[doi:10.19721/j.cnki.1671-8879.2024.02.004]

备注/Memo

备注/Memo:
收稿日期:2024-09-17
基金项目:国家重点研发计划项目(2023YFB0604600); 重点科研平台水平提升项目(300102213501)
作者简介:傅 珍(1976-),女,河南鹤壁人,教授,工学博士,E-mail:zhenfu@chd.edu.cn。
更新日期/Last Update: 2025-02-25